Pulsar wind nebulae (PWNe) are main gamma-ray emitters in the Galactic plane. Although the leptonic scenario is able to explain most PWNe emission well, a hadronic contribution cannot be excluded. High-energy emission raises the possibility that gamma-rays are hadronically produced which inevitably leads to the production of neutrinos. We report a stacking analysis to search for neutrino emission from 35 PWNe that are very-high-energy gamma-ray emitters and the results using 9.5 years of all-sky IceCube data. In the absence of any significant correlation, we set upper limits on the total neutrino emission from those PWNe and constraints on the hadronic component.