No Arabic abstract
Recent state-of-the-art natural language understanding models, such as BERT and XLNet, score a pair of sentences (A and B) using multiple cross-attention operations - a process in which each word in sentence A attends to all words in sentence B and vice versa. As a result, computing the similarity between a query sentence and a set of candidate sentences, requires the propagation of all query-candidate sentence-pairs throughout a stack of cross-attention layers. This exhaustive process becomes computationally prohibitive when the number of candidate sentences is large. In contrast, sentence embedding techniques learn a sentence-to-vector mapping and compute the similarity between the sentence vectors via simple elementary operations. In this paper, we introduce Distilled Sentence Embedding (DSE) - a model that is based on knowledge distillation from cross-attentive models, focusing on sentence-pair tasks. The outline of DSE is as follows: Given a cross-attentive teacher model (e.g. a fine-tuned BERT), we train a sentence embedding based student model to reconstruct the sentence-pair scores obtained by the teacher model. We empirically demonstrate the effectiveness of DSE on five GLUE sentence-pair tasks. DSE significantly outperforms several ELMO variants and other sentence embedding methods, while accelerating computation of the query-candidate sentence-pairs similarities by several orders of magnitude, with an average relative degradation of 4.6% compared to BERT. Furthermore, we show that DSE produces sentence embeddings that reach state-of-the-art performance on universal sentence representation benchmarks. Our code is made publicly available at https://github.com/microsoft/Distilled-Sentence-Embedding.
Recently, BERT realized significant progress for sentence matching via word-level cross sentence attention. However, the performance significantly drops when using siamese BERT-networks to derive two sentence embeddings, which fall short in capturing the global semantic since the word-level attention between two sentences is absent. In this paper, we propose a Dual-view distilled BERT~(DvBERT) for sentence matching with sentence embeddings. Our method deals with a sentence pair from two distinct views, i.e., Siamese View and Interaction View. Siamese View is the backbone where we generate sentence embeddings. Interaction View integrates the cross sentence interaction as multiple teachers to boost the representation ability of sentence embeddings. Experiments on six STS tasks show that our method outperforms the state-of-the-art sentence embedding methods significantly.
The models of n-ary cross sentence relation extraction based on distant supervision assume that consecutive sentences mentioning n entities describe the relation of these n entities. However, on one hand, this assumption introduces noisy labeled data and harms the models performance. On the other hand, some non-consecutive sentences also describe one relation and these sentences cannot be labeled under this assumption. In this paper, we relax this strong assumption by a weaker distant supervision assumption to address the second issue and propose a novel sentence distribution estimator model to address the first problem. This estimator selects correctly labeled sentences to alleviate the effect of noisy data is a two-level agent reinforcement learning model. In addition, a novel universal relation extractor with a hybrid approach of attention mechanism and PCNN is proposed such that it can be deployed in any tasks, including consecutive and nonconsecutive sentences. Experiments demonstrate that the proposed model can reduce the impact of noisy data and achieve better performance on general n-ary cross sentence relation extraction task compared to baseline models.
Transformer models have achieved state-of-the-art results across a diverse range of domains. However, concern over the cost of training the attention mechanism to learn complex dependencies between distant inputs continues to grow. In response, solutions that exploit the structure and sparsity of the learned attention matrix have blossomed. However, real-world applications that involve long sequences, such as biological sequence analysis, may fall short of meeting these assumptions, precluding exploration of these models. To address this challenge, we present a new Transformer architecture, Performer, based on Fast Attention Via Orthogonal Random features (FAVOR). Our mechanism scales linearly rather than quadratically in the number of tokens in the sequence, is characterized by sub-quadratic space complexity and does not incorporate any sparsity pattern priors. Furthermore, it provides strong theoretical guarantees: unbiased estimation of the attention matrix and uniform convergence. It is also backwards-compatible with pre-trained regular Transformers. We demonstrate its effectiveness on the challenging task of protein sequence modeling and provide detailed theoretical analysis.
We provide the first exploration of text-to-text transformers (T5) sentence embeddings. Sentence embeddings are broadly useful for language processing tasks. While T5 achieves impressive performance on language tasks cast as sequence-to-sequence mapping problems, it is unclear how to produce sentence embeddings from encoder-decoder models. We investigate three methods for extracting T5 sentence embeddings: two utilize only the T5 encoder and one uses the full T5 encoder-decoder model. Our encoder-only models outperforms BERT-based sentence embeddings on both transfer tasks and semantic textual similarity (STS). Our encoder-decoder method achieves further improvement on STS. Scaling up T5 from millions to billions of parameters is found to produce consistent improvements on downstream tasks. Finally, we introduce a two-stage contrastive learning approach that achieves a new state-of-art on STS using sentence embeddings, outperforming both Sentence BERT and SimCSE.
Sentence embedding refers to a set of effective and versatile techniques for converting raw text into numerical vector representations that can be used in a wide range of natural language processing (NLP) applications. The majority of these techniques are either supervised or unsupervised. Compared to the unsupervised methods, the supervised ones make less assumptions about optimization objectives and usually achieve better results. However, the training requires a large amount of labeled sentence pairs, which is not available in many industrial scenarios. To that end, we propose a generic and end-to-end approach -- PAUSE (Positive and Annealed Unlabeled Sentence Embedding), capable of learning high-quality sentence embeddings from a partially labeled dataset. We experimentally show that PAUSE achieves, and sometimes surpasses, state-of-the-art results using only a small fraction of labeled sentence pairs on various benchmark tasks. When applied to a real industrial use case where labeled samples are scarce, PAUSE encourages us to extend our dataset without the liability of extensive manual annotation work.