Do you want to publish a course? Click here

Constraining the Formation of the Four Terrestrial Planets in the Solar System

131   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

To reproduce the orbits and masses of the terrestrial planets (analogs) of the solar system, most studies scrutinize simulations for success as a batch. However, there is insufficient discussion in the literature on the likelihood of forming planet analogs simultaneously in the same system (analog system). To address this issue, we performed 540 N-body simulations of protoplanetary disks representative of typical models in the literature. We identified a total of 194 analog systems containing at least three analogs, but only 17 systems simultaneously contained analogs of the four terrestrial planets. From an analysis of our analog systems, we found that, compared to the real planets, truncated disks based on typical outcomes of the Grand Tack model produced analogs of Mercury and Mars that were too dynamically cold and located too close to the Venus and Earth analogs. Additionally, all the Mercury analogs were too massive, while most of the Mars analogs were more massive than Mars. Furthermore, the timing of the Moon-forming impact was too early in these systems, and the amount of additional mass accreted after the event was too great. Therefore, such truncated disks cannot explain the formation of the terrestrial planets. Our results suggest that forming the four terrestrial planets requires disks with the following properties: 1) Mass concentrated in narrow core regions between ~0.7-0.9 and ~1.0-1.2 au; 2) an inner region component starting at ~0.3-0.4 au; 3) a less massive component beginning at ~1.0-1.2 au; 4) embryos rather than planetesimals carrying most of the disk mass; and 5) Jupiter and Saturn placed on eccentric orbits.



rate research

Read More

78 - Anders Johansen 2021
Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites - formed by melting of dust aggregate pebbles or in impacts between planetesimals - have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear. Here we present a model where inwards-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with the Earth to form the Moon) and Mars are all consistent with pebble accretion onto protoplanets that formed around Mars orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Finally, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporise volatiles.
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the Solar System is unusual at the ~1% level among Sun-like stars (or ~0.1% among all stars). But why are we different? Successful formation models for both the Solar System and exoplanet systems rely on two key processes: orbital migration and dynamical instability. Systems of close-in super-Earths or sub-Neptunes require substantial radial inward motion of solids either as drifting mm- to cm-sized pebbles or migrating Earth-mass or larger planetary embryos. We argue that, regardless of their formation mode, the late evolution of super-Earth systems involves migration into chains of mean motion resonances, generally followed by instability when the disk dissipates. This pattern is likely also ubiquitous in giant planet systems. We present three models for inner Solar System formation -- the low-mass asteroid belt, Grand Tack, and Early Instability models -- each invoking a combination of migration and instability. We identify bifurcation points in planetary system formation. We present a series of events to explain why our Solar System is so weird. Jupiters core must have formed fast enough to quench the growth of Earths building blocks by blocking the flux of inward-drifting pebbles. The large Jupiter/Saturn mass ratio is rare among giant exoplanets but may be required to maintain Jupiters wide orbit. The giant planets instability must have been gentle, with no close encounters between Jupiter and Saturn, also unusual in the larger (exoplanet) context. Our Solar System system is thus the outcome of multiple unusual, but not unheard of, events.
The presented work investigates the possible formation of terrestrial planets in the habitable zone (HZ) of the exoplanetary system HD 141399. In this system the HZ is located approximately between the planets c (a = 0.7 au) and d (a = 2.1 au). Extensive numerical integrations of the equations of motion in the pure Newtonian framework of small bodies with different initial conditions in the HZ are performed. Our investigations included several steps starting with 500 massless bodies distributed between planets c and d in order to model the development of the disk of small bodies. It turns out that after some 10^6 years a belt-like structure analogue to the main belt inside Jupiter in our Solar System appears. We then proceed with giving the small bodies masses (Moon-mass) and take into account the gravitational interaction between these planetesimal-like objects. The growing of the objects - with certain percentage of water - due to collisions is computed in order to look for the formation of terrestrial planets. We observe that planets form in regions connected to mean motion resonances (MMR). So far there is no observational evidence of terrestrial planets in the system of HD 141399 but from our results we can conclude that the formation of terrestrial planets - even with an appropriate amount of water necessary for being habitable - in the HZ would have been possible.
In the last few years, the so-called Nice model has got a significant importance in the study of the formation and evolution of the solar system. According to this model, the initial orbital configuration of the giant planets was much more compact than the one we observe today. We study the formation of the giant planets in connection with some parameters that describe the protoplanetary disk. The aim of this study is to establish the conditions that favor their simultaneous formation in line with the initial configuration proposed by the Nice model. We focus in the conditions that lead to the simultaneous formation of two massive cores, corresponding to Jupiter and Saturn, able to achieve the cross-over mass (where the mass of the envelope of the giant planet equals the mass of the core, and gaseous runway starts) while Uranus and Neptune have to be able to grow to their current masses. We compute the in situ planetary formation, employing the numerical code introduced in our previous work, for different density profiles of the protoplanetary disk. Planetesimal migration is taken into account and planetesimals are considered to follow a size distribution between $r_p^{min}$ (free parameter) and $r_p^{max}= 100$ km. The cores growth is computed according to the oligarchic growth regime. The simultaneous formation of the giant planets was successfully completed for several initial conditions of the disk. We find that for protoplanetary disks characterized by a power law ($Sigma propto r^{-p}$), smooth surface density profiles ($p leq 1.5$) favor the simultaneous formation. However, for steep slopes ($psim 2$, as previously proposed by other authors) the simultaneous formation of the solar system giant planets is unlikely ...
We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about $60% - 80%$. In each simulation, 3 - 4 terrestrial planets are formed inside Jupiter with masses of $0.15 - 3.6 M_{oplus}$. In the $0.5 - 4$ AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of $10^8$ yr. In one of our simulations, com-mensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا