No Arabic abstract
We study the one-band Hubbard model on the honeycomb lattice using a combination of quantum Monte Carlo (QMC) simulations and static as well as dynamical mean-field theory (DMFT). This model is known to show a quantum phase transition between a Dirac semi-metal and the antiferromagnetic insulator. The aim of this article is to provide a detailed comparison between these approaches by computing static properties, notably ground-state energy, single-particle gap, double occupancy, and staggered magnetization, as well as dynamical quantities such as the single-particle spectral function. At the static mean-field level local moments cannot be generated without breaking the SU(2) spin symmetry. The DMFT approximation accounts for temporal fluctuations, thus captures both the evolution of the double occupancy and the resulting local moment formation in the paramagnetic phase. As a consequence, the DMFT approximation is found to be very accurate in the Dirac semi-metallic phase where local moment formation is present and the spin correlation length small. However, in the vicinity of the fermion quantum critical point the spin correlation length diverges and the spontaneous SU(2) symmetry breaking leads to low-lying Goldstone modes in the magnetically ordered phase. The impact of these spin fluctuations on the single-particle spectral function -- textit{waterfall} features and narrow spin-polaron bands -- is only visible in the lattice QMC approach.
We present different methods to increase the performance of Hybrid Monte Carlo simulations of the Hubbard model in two-dimensions. Our simulations concentrate on a hexagonal lattice, though can be easily generalized to other lattices. It is found that best results can be achieved using a flexible GMRES solver for matrix
In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it is {it small}, very large system sizes at high precisions are required to obtain reliable results. Alternatively, one can pin the order by introducing a local symmetry breaking field, and then measure the induced local order parameter infinitely far from the pinning center. The method is tested here at length for the Hubbard model on honeycomb lattice, within the realm of the projective auxiliary field quantum Monte Carlo algorithm. With our enhanced resolution we find a direct and continuous quantum phase transition between the semi-metallic and the insulating antiferromagnetic states with increase of the interaction. The single particle gap in units of the Hubbard $U$ tracks the staggered magnetization. An excellent data collapse is obtained by finite size scaling, with the values of the critical exponents in accord with the Gross-Neveu universality class of the transition.
Layered antiferromagnetic spin density wave (LAF) state is one of the plausible ground states of charge neutral Bernal stacked bilayer graphene. In this paper, we use determinant quantum Monte Carlo method to study the effect of the electric field on the magnetic order in bilayer Hubbard model on a honeycomb lattice. Our results qualitatively support the LAF ground state found in the mean field theory. The obtained magnetic moments, however, are much smaller than what are estimated in the mean field theory. As electric field increases, the magnetic order parameter rapidly decreases.
Quantum phase transitions in the Hubbard model on the honeycomb lattice are investigated in the variational cluster approximation. The critical interaction for the paramagnetic to antiferromagnetic phase transition is found to be in remarkable agreement with a recent large-scale quantum Monte Carlo simulation. Calculated staggered magnetization increases continuously with $U$ and thus we find the phase transition is of a second order. We also find that the semimetal-insulator transition occurs at infinitesimally small interaction and thus a paramagnetic insulating state appears in a wide interaction range. A crossover behavior of electrons from itinerant to localized character found in the calculated single-particle excitation spectra and short-range spin correlation functions indicates that an effective spin model for the paramagnetic insulating phase is far from a simple Heisenberg model with a nearest-neighbor exchange interaction.
Topological phases typically encode topology at the level of the single particle band structure. But a remarkable class of models shows that quantum anomalous Hall effects can be driven exclusively by interactions, while the parent non-interacting band structure is topologically trivial. Unfortunately, these models have so far relied on interactions that do not spatially decay and are therefore unphysical. We study a model of spinless fermions on a decorated honeycomb lattice. Using complementary methods, mean-field theory and exact diagonalization, we find a robust quantum anomalous Hall phase arising from spatially decaying interactions. Our finding paves the way for observing the quantum anomalous Hall effect driven entirely by interactions.