Do you want to publish a course? Click here

Optimising Automatic Morphological Classification of Galaxies with Machine Learning and Deep Learning using Dark Energy Survey Imaging

76   0   0.0 ( 0 )
 Added by Cheng Ting-Yun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or a investigation for maximising their effectiveness. We carry out a comparison between several common machine learning methods for galaxy classification (Convolutional Neural Network (CNN), K-nearest neighbour, Logistic Regression, Support Vector Machine, Random Forest, and Neural Networks) by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these ten methods in our study. Using a sample of $sim$2,800 galaxies with visual classification from GZ1, we reach an accuracy of $sim$0.99 for the morphological classification of Ellipticals and Spirals. The further investigation of the galaxies that have a different ML and visual classification but with high predicted probabilities in our CNN usually reveals an the incorrect classification provided by GZ1. We further find the galaxies having a low probability of being either spirals or ellipticals are visually Lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both Es and Spirals. We confirm that $sim$2.5% galaxies are misclassified by GZ1 in our study. After correcting these galaxies labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).



rate research

Read More

Galaxy morphology is a fundamental quantity, that is essential not only for the full spectrum of galaxy-evolution studies, but also for a plethora of science in observational cosmology. While a rich literature exists on morphological-classification techniques, the unprecedented data volumes, coupled, in some cases, with the short cadences of forthcoming Big-Data surveys (e.g. from the LSST), present novel challenges for this field. Large data volumes make such datasets intractable for visual inspection (even via massively-distributed platforms like Galaxy Zoo), while short cadences make it difficult to employ techniques like supervised machine-learning, since it may be impractical to repeatedly produce training sets on short timescales. Unsupervised machine learning, which does not require training sets, is ideally suited to the morphological analysis of new and forthcoming surveys. Here, we employ an algorithm that performs clustering of graph representations, in order to group image patches with similar visual properties and objects constructed from those patches, like galaxies. We implement the algorithm on the Hyper-Suprime-Cam Subaru-Strategic-Program Ultra-Deep survey, to autonomously reduce the galaxy population to a small number (160) of morphological clusters, populated by galaxies with similar morphologies, which are then benchmarked using visual inspection. The morphological classifications (which we release publicly) exhibit a high level of purity, and reproduce known trends in key galaxy properties as a function of morphological type at z<1 (e.g. stellar-mass functions, rest-frame colours and the position of galaxies on the star-formation main sequence). Our study demonstrates the power of unsupervised machine learning in performing accurate morphological analysis, which will become indispensable in this new era of deep-wide surveys.
Classifying the morphologies of galaxies is an important step in understanding their physical properties and evolutionary histories. The advent of large-scale surveys has hastened the need to develop techniques for automated morphological classification. We train and test several convolutional neural network architectures to classify the morphologies of galaxies in both a 3-class (elliptical, lenticular, spiral) and 4-class (+irregular/miscellaneous) schema with a dataset of 14034 visually-classified SDSS images. We develop a new CNN architecture that outperforms existing models in both 3 and 4-way classification, with overall classification accuracies of 83% and 81% respectively. We also compare the accuracies of 2-way / binary classifications between all four classes, showing that ellipticals and spirals are most easily distinguished (>98% accuracy), while spirals and irregulars are hardest to differentiate (78% accuracy). Through an analysis of all classified samples, we find tentative evidence that misclassifications are physically meaningful, with lenticulars misclassified as ellipticals tending to be more massive, among other trends. We further combine our binary CNN classifiers to perform a hierarchical classification of samples, obtaining comparable accuracies (81%) to the direct 3-class CNN, but considerably worse accuracies in the 4-way case (65%). As an additional verification, we apply our networks to a small sample of Galaxy Zoo images, obtaining accuracies of 92%, 82% and 77% for the binary, 3-way and 4-way classifications respectively.
We apply four statistical learning methods to a sample of $7941$ galaxies ($z<0.06$) from the Galaxy and Mass Assembly (GAMA) survey to test the feasibility of using automated algorithms to classify galaxies. Using $10$ features measured for each galaxy (sizes, colours, shape parameters & stellar mass) we apply the techniques of Support Vector Machines (SVM), Classification Trees (CT), Classification Trees with Random Forest (CTRF) and Neural Networks (NN), returning True Prediction Ratios (TPRs) of $75.8%$, $69.0%$, $76.2%$ and $76.0%$ respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement) serves as a potential indicator of human error in classification, occurring in $sim9%$ of ellipticals, $sim9%$ of Little Blue Spheroids, $sim14%$ of early-type spirals, $sim21%$ of intermediate-type spirals and $sim4%$ of late-type spirals & irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy datasets. Adopting the CTRF algorithm, the TPRs of the 5 galaxy types are : E, $70.1%$; LBS, $75.6%$; S0-Sa, $63.6%$; Sab-Scd, $56.4%$ and Sd-Irr, $88.9%$. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS & S0-Sa) and disk-dominated (Sab-Scd & Sd-Irr), achieving an overall accuracy of $89.8%$. This translates into an accuracy of $84.9%$ for spheroid-dominated systems and $92.5%$ for disk-dominated systems.
121 - Yen Chen Chen 2021
Traditional classification for subclass of the Seyfert galaxies is visual inspection or using a quantity defined as a flux ratio between the Balmer line and forbidden line. One algorithm of deep learning is Convolution Neural Network (CNN) and has shown successful classification results. We building a 1-dimension CNN model to distinguish Seyfert 1.9 spectra from Seyfert 2 galaxies. We find our model can recognize Seyfert 1.9 and Seyfert 2 spectra with an accuracy over 80% and pick out an additional Seyfert 1.9 sample which was missed by visual inspection. We use the new Seyfert 1.9 sample to improve performance of our model and obtain a 91% precision of Seyfert 1.9. These results indicate our model can pick out Seyfert 1.9 spectra among Seyfert 2 spectra. We decompose H{alpha} emission line of our Seyfert 1.9 galaxies by fitting 2 Gaussian components and derive line width and flux. We find velocity distribution of broad H{alpha} component of the new Seyfert 1.9 sample has an extending tail toward the higher end and luminosity of the new Seyfert 1.9 sample is slightly weaker than the original Seyfert 1.9 sample. This result indicates that our model can pick out the sources that have relatively weak broad H{alpha} component. Besides, we check distributions of the host galaxy morphology of our Seyfert 1.9 samples and find the distribution of the host galaxy morphology is dominant by large bulge galaxy. In the end, we present an online catalog of 1297 Seyfert 1.9 galaxies with measurement of H{alpha} emission line.
The new generation of deep photometric surveys requires unprecedentedly precise shape and photometry measurements of billions of galaxies to achieve their main science goals. At such depths, one major limiting factor is the blending of galaxies due to line-of-sight projection, with an expected fraction of blended galaxies of up to 50%. Current deblending approaches are in most cases either too slow or not accurate enough to reach the level of requirements. This work explores the use of deep neural networks to estimate the photometry of blended pairs of galaxies in monochrome space images, similar to the ones that will be delivered by the Euclid space telescope. Using a clean sample of isolated galaxies from the CANDELS survey, we artificially blend them and train two different network models to recover the photometry of the two galaxies. We show that our approach can recover the original photometry of the galaxies before being blended with $sim$7% accuracy without any human intervention and without any assumption on the galaxy shape. This represents an improvement of at least a factor of 4 compared to the classical SExtractor approach. We also show that forcing the network to simultaneously estimate a binary segmentation map results in a slightly improved photometry. All data products and codes will be made public to ease the comparison with other approaches on a common data set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا