Gating effects in antiferromagnetic CuMnAs


Abstract in English

Antiferromagnets (AFs) attract much attention due to potential applications in spintronics. Both the electric current and the electric field are considered as tools suitable to control properties and the Neel vector direction of AFs. Among AFs, CuMnAs has been shown to exhibit specific properties that result in the existence of the current-induced spin-orbit torques commensurate with spin directions and topological Dirac quasiparticles. Here, we report on the observation of a reversible effect of an electric field on the resistivity of CuMnAs thin films, employing ionic liquid as a gate insulator. The data allow to determine the carrier type, concentration, and mobility independently of the Hall effect that may be affected by an anomalous component.

Download