The Planck Catalogue of Galactic Cold Clumps (PGCC) contains over 13000 sources detected based on their cold dust signature. They are believed to consist of a mixture of quiescent, pre-stellar, and already star-forming objects. We extracted PGCC-type objects from cloud simulations and examined their physical and polarisation properties. The comparison with the PGCC catalogue helps to characterise the PGCC sample and provides valuable tests for numerical simulations of interstellar medium. We used several MHD snapshots to define the density field of our models. Sub-millimetre images of the surface brightness and polarisation were obtained with radiative transfer calculations. We examined the statistics of synthetic cold clump catalogues and examined the variations of the clump polarisation fraction p. The clump sizes, aspect ratios, and temperatures in the synthetic catalogue are similar to the PGCC. The fluxes and column densities are smaller by a factor of a few. Rather than with an increased dust opacity, this could be explained by increasing the average column density of the models by a factor of two to three, close to N(H2)= 10^22 cm-2. When the line of sight is parallel to the mean magnetic field, the polarisation fraction tends to increase towards the clump centres, contrary to observations. When the field is perpendicular, the polarisation fraction tends to decrease towards the clumps, but the drop in $p$ is small (e.g. from p~8% to p~7%). Magnetic field geometry reduces the polarisation fraction in the simulated clumps by only Delta p~1% on average. The larger drop seen towards the actual PGCC clumps suggests some loss of grain alignment in the dense medium, such as predicted by the radiative torque mechanism. The statistical study is not able to quantify dust opacity changes at the scale of the PGCC clumps.