Do you want to publish a course? Click here

Universal Adversarial Audio Perturbations

75   0   0.0 ( 0 )
 Added by Sajjad Abdoli
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We demonstrate the existence of universal adversarial perturbations, which can fool a family of audio classification architectures, for both targeted and untargeted attack scenarios. We propose two methods for finding such perturbations. The first method is based on an iterative, greedy approach that is well-known in computer vision: it aggregates small perturbations to the input so as to push it to the decision boundary. The second method, which is the main contribution of this work, is a novel penalty formulation, which finds targeted and untargeted universal adversarial perturbations. Differently from the greedy approach, the penalty method minimizes an appropriate objective function on a batch of samples. Therefore, it produces more successful attacks when the number of training samples is limited. Moreover, we provide a proof that the proposed penalty method theoretically converges to a solution that corresponds to universal adversarial perturbations. We also demonstrate that it is possible to provide successful attacks using the penalty method when only one sample from the target dataset is available for the attacker. Experimental results on attacking various 1D CNN architectures have shown attack success rates higher than 85.0% and 83.1% for targeted and untargeted attacks, respectively using the proposed penalty method.



rate research

Read More

We study the problem of learning classifiers robust to universal adversarial perturbations. While prior work approaches this problem via robust optimization, adversarial training, or input transformation, we instead phrase it as a two-player zero-sum game. In this new formulation, both players simultaneously play the same game, where one player chooses a classifier that minimizes a classification loss whilst the other player creates an adversarial perturbation that increases the same loss when applied to every sample in the training set. By observing that performing a classification (respectively creating adversarial samples) is the best response to the other player, we propose a novel extension of a game-theoretic algorithm, namely fictitious play, to the domain of training robust classifiers. Finally, we empirically show the robustness and versatility of our approach in two defence scenarios where universal attacks are performed on several image classification datasets -- CIFAR10, CIFAR100 and ImageNet.
Universal Adversarial Perturbations (UAPs) are input perturbations that can fool a neural network on large sets of data. They are a class of attacks that represents a significant threat as they facilitate realistic, practical, and low-cost attacks on neural networks. In this work, we derive upper bounds for the effectiveness of UAPs based on norms of data-dependent Jacobians. We empirically verify that Jacobian regularization greatly increases model robustness to UAPs by up to four times whilst maintaining clean performance. Our theoretical analysis also allows us to formulate a metric for the strength of shared adversarial perturbations between pairs of inputs. We apply this metric to benchmark datasets and show that it is highly correlated with the actual observed robustness. This suggests that realistic and practical universal attacks can be reliably mitigated without sacrificing clean accuracy, which shows promise for the robustness of machine learning systems.
Given a state-of-the-art deep neural network classifier, we show the existence of a universal (image-agnostic) and very small perturbation vector that causes natural images to be misclassified with high probability. We propose a systematic algorithm for computing universal perturbations, and show that state-of-the-art deep neural networks are highly vulnerable to such perturbations, albeit being quasi-imperceptible to the human eye. We further empirically analyze these universal perturbations and show, in particular, that they generalize very well across neural networks. The surprising existence of universal perturbations reveals important geometric correlations among the high-dimensional decision boundary of classifiers. It further outlines potential security breaches with the existence of single directions in the input space that adversaries can possibly exploit to break a classifier on most natural images.
In this paper we address the instability issue of generative adversarial network (GAN) by proposing a new similarity metric in unitary space of Schur decomposition for 2D representations of audio and speech signals. We show that encoding departure from normality computed in this vector space into the generator optimization formulation helps to craft more comprehensive spectrograms. We demonstrate the effectiveness of binding this metric for enhancing stability in training with less mode collapse compared to baseline GANs. Experimental results on subsets of UrbanSound8k and Mozilla common voice datasets have shown considerable improvements on the quality of the generated samples measured by the Frechet inception distance. Moreover, reconstructed signals from these samples, have achieved higher signal to noise ratio compared to regular LS-GANs.
The state of the art in music source separation employs neural networks trained in a supervised fashion on multi-track databases to estimate the sources from a given mixture. With only few datasets available, often extensive data augmentation is used to combat overfitting. Mixing random tracks, however, can even reduce separation performance as instruments in real music are strongly correlated. The key concept in our approach is that source estimates of an optimal separator should be indistinguishable from real source signals. Based on this idea, we drive the separator towards outputs deemed as realistic by discriminator networks that are trained to tell apart real from separator samples. This way, we can also use unpaired source and mixture recordings without the drawbacks of creating unrealistic music mixtures. Our framework is widely applicable as it does not assume a specific network architecture or number of sources. To our knowledge, this is the first adoption of adversarial training for music source separation. In a prototype experiment for singing voice separation, separation performance increases with our approach compared to purely supervised training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا