Do you want to publish a course? Click here

A Note on the Third Life of Quantum Logic

125   0   0.0 ( 0 )
 Added by Christian Herrmann
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The purpose of this note is to discuss some of the questions raised by Dunn, J. Michael; Moss, Lawrence S.; Wang, Zhenghan in Editors introduction: the third life of quantum logic: quantum logic inspired by quantum computing.



rate research

Read More

Danos and Regnier (1989) introduced the par-switching condition for the multiplicative proof-structures and simplified the sequentialization theorem of Girard (1987) by the use of par-switching. Danos and Regner (1989) also generalized the par-switching to a switching for $n$-ary connectives (an $n$-ary switching, in short) and showed that the expansion property which means that any excluded-middle formula has a correct proof-net in the sense of their $n$-ary switching. They added a remark that the sequentialization theorem does not hold with their switching. Their definition of switching for $n$-ary connectives is a natural generalization of the original switching for the binary connectives. However, there are many other possible definitions of switching for $n$-ary connectives. We give an alternative and natural definition of $n$-ary switching, and we remark that the proof of sequentialization theorem by Olivier Laurent with the par-switching works for our $n$-ary switching; hence that the sequentialization theorem holds for our $n$-ary switching. On the other hand, we remark that the expansion property does not hold with our switching anymore. We point out that no definition of $n$-ary switching satisfies both the sequentialization theorem and the expansion property at the same time except for the purely tensor-based (or purely par-based) connectives.
122 - D Goswami , S Joardar 2018
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) manifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.
79 - Anand Pillay 2019
We use the geometric axioms point of view to give an effective listing of the complete types of the theory $DCF_{0}$ of differentially closed fields of characteristic $0$. This gives another account of observations made in earlier papers.
210 - B. Mirzaii 2009
In this paper the third homology group of the linear group GL_2(R) with integral coefficients is investigated, where R is a commutative ring with many units.
We continue the study of computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that although ${omega cdot 2, omega^star cdot 2}$ is computably embeddable in ${omega^2, {(omega^2)}^star}$, the class ${omega cdot k,omega^star cdot k}$ is emph{not} computably embeddable in ${omega^2, {(omega^2)}^star}$ for any natural number $k geq 3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا