Experimental spectra from medium energy ion scattering were compared to Monte-Carlo simulations (employing the TRBS code) to obtain information on the scattering potential. The impact of uncertainties in the interatomic potential on quantification of sample properties such as thickness, composition or electronic stopping was investigated for different scattering geometries: backscattering and transmission. For backscattered He ions with tens of keV primary energy the scattering potential was found to overestimate the multiple scattering background in the energy spectra resulting in an uncertainty of < 3 % in quantitative analysis. Light ions transmitted through a sample for equivalent path length in the medium are only affected minorly by changes in the scattering potential. This effect becomes more distinct for heavier primary ions.
Energy spectra of backscattered and transmitted ions with primary energies of 50 keV and 100 keV interacting with self-supporting foils were recorded with a Time-of-Flight Medium-Energy Ion Scattering setup in a single experiment. Self-supporting Au and W foils without backing material were used. For He ions transmitted through Au the spectrum of detected particles shows two distinct components corresponding to different energy losses in the film, whereas for protons no such phenomenon was observed. To determine the origin of these different contributions, measurements for different angles of incidence and scattering angles have been evaluated. The results suggest that the two components in the spectrum of transmitted He ions could be attributed to impact parameter dependent energy loss, being more prominent for He ions than for protons. The main origin of the necessary impact parameter selection along the different ion trajectories is expected to be texture in the Au-foils.
We investigate the effect of short-range order (SRO) on the electronic structure in alloys from the theoretical point of view using density of states (DOS) data. In particular, the interaction between the atoms at different lattice sites is affected by chemical disorder, which in turn is reflected in the fine structure of the DOS and, hence, in the outcome of spectroscopic measurements. We aim at quantifying the degree of potential SRO with a proper parameter. The theoretical modeling is done with the Korringa-Kohn-Rostoker Greens function method. Therein, the extended multi-sublattice non-local coherent potential approximation is used to include SRO. As a model system, we use the binary solid solution Ag$_c$Pd$_{1-c}$ at three representative concentrations $c=0.25$, $0.5$ and $0.75$. The degree of SRO is varied from local ordering to local segregation through an intermediate completely uncorrelated state. We observe some pronounced features, which change over the whole energy range of the valence bands as a function of SRO in the alloy. These spectral variations should be traceable in modern photoemission experiments.
In this work, we emphasize the important contribution of the 2s Bloch wave state to the properties of a STEM electron probe propagating on an atomic column. For a strong enough column potential, the confinement of the 2s state leads to a long-period oscillation of the electron wave function, which is reflected in the resulting STEM-HAADF intensity. We show how this influences STEM composition quantification even at large thicknesses. We found additionally that the excitation of the 2s state affects the intensity of alloys where long-range order phenomena are present, which in turn provides a way to probe the degree of order in alloys.
We show by first-principles calculations that the skew-scattering anomalous Hall and spin-Hall angles of L$1_0$-ordered FePt drastically depend on different types of disorder. A different sign of the AHE is obtained when slightly deviating from the stoichiometric ratio towards the Fe-rich side as compared to the Pt-rich side. For stoichiometric samples, short-range ordering of defects has a profound effect on the Hall angles and can change them by a factor of $2$ as compared to the case of uncorrelated disorder. This might explain the vast range of anomalous Hall angles measured in experiments, which undergo different preparation procedures and thus might differ in their crystallographic quality.
We investigated the specific electronic energy deposition by protons and He ions with keV energies in different transition metal nitrides of technological interest. Data were obtained from two different time-of-flight ion scattering setups and show excellent agreement. For protons interacting with light nitrides, i.e. TiN, VN and CrN, very similar stopping cross sections per atom were found, which coincide with literature data of N2 gas for primary energies <= 25 keV. In case of the chemically rather similar nitrides with metal constituents from the 5th and 6th period, i.e. ZrN and HfN, the electronic stopping cross sections were measured to exceed what has been observed for molecular N2 gas. For He ions, electronic energy loss in all nitrides was found to be significantly higher compared to the equivalent data of N2 gas. Additionally, deviations from velocity proportionality of the observed specific electronic energy loss are observed. A comparison with predictions from density functional theory for protons and He ions yields a high apparent efficiency of electronic excitations of the target for the latter projectile. These findings are considered to indicate the contributions of additional mechanisms besides electron hole pair excitations, such as electron capture and loss processes of the projectile or promotion of target electrons in atomic collisions.
Barbara Bruckner
,Tomas Strapko
,Mauricio A. Sortica
.
(2019)
.
"On the influence of uncertainties in scattering potentials on quantitative analysis using keV ions"
.
Barbara Bruckner
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا