Do you want to publish a course? Click here

Pointing System for the Large Size Telescopes Prototype of the Cherenkov Telescope Array

75   0   0.0 ( 0 )
 Added by Darko Zari\\'c
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The pointing system of the prototype of the Large Size Telescope (LST-1) for the Cherenkov Telescope Array observatory, should ensure mapping of the gamma-ray image of a point-like source in the Cherenkov camera to the sky coordinates with a precision better than 14 arcseconds. Detailed studies of the telescope deformations are performed in order to disentangle different deformations and quantify their contributions to the miss-pointing, to learn how to correct for them, and finally how to design the system for offline and online pointing corrections. The LST-1 pointing precision system consist of several devices mounted at the center of the dish: Starguider Camera (SG), Camera Displacement Monitor (CDM), two inclinometers, four distance meters, and an Optical Axis Reference Laser (OARL), working together with the LEDs mounted in a circle around the Cherenkov camera. The online pointing corrections are based on a bending model as currently done by existing IACTs. The offline corrections will be performed combining measurements done by the SG and CDM cameras. SG will provide the position of the Cherenkov camera center with respect to the sky coordinates with a precision of 5 arcseconds, while CDM will provide the deviation of the telescope optical axis defined by the OARL spots with respect to the Cherenkov camera center with a precision better than 5 arcseconds. Laboratory measurements on dedicated test benches showed that the required pointing precision can be achieved for SG, CDM and inclinometer.



rate research

Read More

Pointing calibration is an offline correction applied in order to obtain the true pointing direction of a telescope. The Cherenkov Telescope Array (CTA) aims to have the precision to determine the position of point-like as well as slightly extended sources, with the goal of systematic errors less than 7 arc seconds in space angle. This poster describes the pointing calibration concept being developed for the CTA Medium Size Telescope (MST) prototype at Berlin-Adlershof, showing test results and preliminary measurements. The MST pointing calibration method uses two CCD cameras, mounted on the telescope dish, to determine the true pointing of the telescope. The Lid CCD is aligned to the optical axis of the telescope, calibrated with LEDs on the dummy gamma-camera lid; the Sky CCD is pre-aligned to the Lid CCD and the transformation between the Sky and Lid CCD camera fields of view is precisely modelled with images from special pointing runs which are also used to determine the pointing model. During source tracking, the CCD cameras record images which are analysed offline using software tools including Astrometry.net to determine the true pointing coordinates.
The pointing capability of a telescope in the Cherenkov Telescope Array (CTA) is a crucial aspect in the calibration of the instrument. It describes how a position in the sky is transformed to the focal plane of the telescope and allows precise directional reconstructions of atmospheric particle showers. The favoured approach for pointing calibrations of the Medium Size Telescopes (MST) is the utilisation of an CCD-camera installed in the centre of the dish, which images the night sky and the focal plane simultaneously. The technical implementation of this solution and test results taken over a period of one year at the MST prototype in Berlin/Adlershof are presented. Investigations of pointing calibration precision with simulated data and real data taken during test runs of the prototype telescope will also be shown.
An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vice versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.
The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m$^2$. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of $sim$94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.
404 - G. Ambrosi , Y. Awane , H. Baba 2013
The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا