Do you want to publish a course? Click here

Video Stitching for Linear Camera Arrays

298   0   0.0 ( 0 )
 Added by Wei-Sheng Lai
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Despite the long history of image and video stitching research, existing academic and commercial solutions still produce strong artifacts. In this work, we propose a wide-baseline video stitching algorithm for linear camera arrays that is temporally stable and tolerant to strong parallax. Our key insight is that stitching can be cast as a problem of learning a smooth spatial interpolation between the input videos. To solve this problem, inspired by pushbroom cameras, we introduce a fast pushbroom interpolation layer and propose a novel pushbroom stitching network, which learns a dense flow field to smoothly align the multiple input videos for spatial interpolation. Our approach outperforms the state-of-the-art by a significant margin, as we show with a user study, and has immediate applications in many areas such as virtual reality, immersive telepresence, autonomous driving, and video surveillance.



rate research

Read More

Panoramic video is a sort of video recorded at the same point of view to record the full scene. With the development of video surveillance and the requirement for 3D converged video surveillance in smart cities, CPU and GPU are required to possess strong processing abilities to make panoramic video. The traditional panoramic products depend on post processing, which results in high power consumption, low stability and unsatisfying performance in real time. In order to solve these problems,we propose a real-time panoramic video stitching framework.The framework we propose mainly consists of three algorithms, LORB image feature extraction algorithm, feature point matching algorithm based on LSH and GPU parallel video stitching algorithm based on CUDA.The experiment results show that the algorithm mentioned can improve the performance in the stages of feature extraction of images stitching and matching, the running speed of which is 11 times than that of the traditional ORB algorithm and 639 times than that of the traditional SIFT algorithm. Based on analyzing the GPU resources occupancy rate of each resolution image stitching, we further propose a stream parallel strategy to maximize the utilization of GPU resources. Compared with the L-ORB algorithm, the efficiency of this strategy is improved by 1.6-2.5 times, and it can make full use of GPU resources. The performance of the system accomplished in the paper is 29.2 times than that of the former embedded one, while the power dissipation is reduced to 10W.
Recently, parametric mappings have emerged as highly effective surface representations, yielding low reconstruction error. In particular, the latest works represent the target shape as an atlas of multiple mappings, which can closely encode object parts. Atlas representations, however, suffer from one major drawback: The individual mappings are not guaranteed to be consistent, which results in holes in the reconstructed shape or in jagged surface areas. We introduce an approach that explicitly encourages global consistency of the local mappings. To this end, we introduce two novel loss terms. The first term exploits the surface normals and requires that they remain locally consistent when estimated within and across the individual mappings. The second term further encourages better spatial configuration of the mappings by minimizing novel stitching error. We show on standard benchmarks that the use of normal consistency requirement outperforms the baselines quantitatively while enforcing better stitching leads to much better visual quality of the reconstructed objects as compared to the state-of-the-art.
In this work, we propose using camera arrays coupled with coherent illumination as an effective method of improving spatial resolution in long distance images by a factor of ten and beyond. Recent advances in ptychography have demonstrated that one can image beyond the diffraction limit of the objective lens in a microscope. We demonstrate a similar imaging system to image beyond the diffraction limit in long range imaging. We emulate a camera array with a single camera attached to an X-Y translation stage. We show that an appropriate phase retrieval based reconstruction algorithm can be used to effectively recover the lost high resolution details from the multiple low resolution acquired images. We analyze the effects of noise, required degree of image overlap, and the effect of increasing synthetic aperture size on the reconstructed image quality. We show that coherent camera arrays have the potential to greatly improve imaging performance. Our simulations show resolution gains of 10x and more are achievable. Furthermore, experimental results from our proof-of-concept systems show resolution gains of 4x-7x for real scenes. Finally, we introduce and analyze in simulation a new strategy to capture macroscopic Fourier Ptychography images in a single snapshot, albeit using a camera array.
When capturing panoramas, people tend to align their cameras with the vertical axis, i.e., the direction of gravity. Moreover, modern devices, such as smartphones and tablets, are equipped with an IMU (Inertial Measurement Unit) that can measure the gravity vector accurately. Using this prior, the y-axes of the cameras can be aligned or assumed to be already aligned, reducing their relative orientation to 1-DOF (degree of freedom). Exploiting this assumption, we propose new minimal solutions to panoramic image stitching of images taken by cameras with coinciding optical centers, i.e., undergoing pure rotation. We consider four practical camera configurations, assuming unknown fixed or varying focal length with or without radial distortion. The solvers are tested both on synthetic scenes and on more than 500k real image pairs from the Sun360 dataset and from scenes captured by us using two smartphones equipped with IMUs. It is shown, that they outperform the state-of-the-art both in terms of accuracy and processing time.
In this paper, we derive a new differential homography that can account for the scanline-varying camera poses in Rolling Shutter (RS) cameras, and demonstrate its application to carry out RS-aware image stitching and rectification at one stroke. Despite the high complexity of RS geometry, we focus in this paper on a special yet common input -- two consecutive frames from a video stream, wherein the inter-frame motion is restricted from being arbitrarily large. This allows us to adopt simpler differential motion model, leading to a straightforward and practical minimal solver. To deal with non-planar scene and camera parallax in stitching, we further propose an RS-aware spatially-varying homography field in the principle of As-Projective-As-Possible (APAP). We show superior performance over state-of-the-art methods both in RS image stitching and rectification, especially for images captured by hand-held shaking cameras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا