Do you want to publish a course? Click here

General Schwarz Lemmata and their applications

45   0   0.0 ( 0 )
 Added by Lei Ni
 Publication date 2019
  fields
and research's language is English
 Authors Lei Ni




Ask ChatGPT about the research

We prove estimates interpolating the Schwarz Lemmata of Royden-Yau and the ones recently established by the author. These more flexible estimates provide additional information on (algebraic) geometric aspects of compact Kahler manifolds with nonnegative holomorphic sectional curvature, nonnegative $Ric_ell$ or positive $S_ell$.



rate research

Read More

174 - Mukut Mani Tripathi 2016
The notion of different kind of algebraic Casorati curvatures are introduced. Some results expressing basic Casorati inequalities for algebraic Casorati curvatures are presented. Equality cases are also discussed. As a simple application, basic Casorati inequalities for different $delta $-Casorati curvatures for Riemannian submanifolds are presented. Further applying these results, Casorati inequalities for Riemannian submanifolds of real space forms are obtained. Finally, some problems are presented for further studies.
We prove several Liouville theorems for F-harmonic maps from some complete Riemannian manifolds by assuming some conditions on the Hessian of the distance function, the degrees of F(t) and the asymptotic behavior of the map at infinity. In particular, the results can be applied to F-harmonic maps from some pinched manifolds, and can deduce a Bernstein type result for an entire minimal graph.
The CR $delta$-invariant for CR-submanifolds was introduced in a recent article [B. Y. Chen, An optimal inequality for CR-warped products in complex space forms involving CR $delta$-invariant, Internat. J. Math. 23} (2012), no. 3, 1250045 (17 pages)]. In this paper, we prove two new optimal inequalities for anti-holomorphic submanifolds in complex space forms involving the CR $delta$-invariant. Moreover, we obtain some classification results for certain anti-holomorphic submanifolds in complex space forms which satisfy the equality case of either inequality.
139 - Haojie Chen , Xiaolan Nie 2021
We prove two results related to the Schwarz lemma in complex geometry. First, we show that if the inequality in the Schwarz lemmata of Yau, Royden and Tosatti becomes equality at one point, then the equality holds on the whole manifold. In particular, the holomorphic map is totally geodesic and has constant rank. In the second part, we study the holomorphic sectional curvature on an almost Hermitian manifold and establish a Schwarz lemma in terms of holomorphic sectional curvatures in almost Hermitian setting.
199 - Yuxin Dong , Yibin Ren , Weike Yu 2019
In this paper, we consider some generalized holomorphic maps between pseudo-Hermitian manifolds. These maps include the emph{CR} maps and the transversally holomorphic maps. In terms of some sub-Laplacian or Hessian type Bochner formulas, and comparison theorems in the pseudo-Hermitian version, we are able to establish several Schwarz type results for both the emph{CR} maps and the transversally holomorphic maps between pseudo-Hermitian manifolds. Finally, we also discuss the emph{CR} hyperbolicity problem for pseudo-Hermitian manifolds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا