Do you want to publish a course? Click here

Electron-positron planar orbits in a constant magnetic field

66   0   0.0 ( 0 )
 Added by M. A. Gonzalez Leon
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The different types of orbits in the classical problem of two particles with equal masses and opposite charges on a plane under the influence of a constant orthogonal magnetic field are classified. The equations of the system are reduced to the problem of a Coulomb center plus a harmonic oscillator. The associated bifurcation diagram is fully explained. Using this information the dynamics of the two particles is described.



rate research

Read More

We consider the Dirichlet Laplacian with a constant magnetic field in a two-dimensional domain of finite measure. We determine the sharp constants in semi-classical eigenvalue estimates and show, in particular, that Polyas conjecture is not true in the presence of a magnetic field.
561 - Laurent Amour 2008
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E(P_3)=0$, where $P_3 mapsto E(P_3)$ is the derivative of the map $P_3 mapsto E(P_3) = inf sigma (H(P_3))$. If $E(P_3) eq 0$, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant.
A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for 3D Hartree type equations with a quadratic potential. The asymptotic parameter is 1/T, where $Tgg1$ is the adiabatic evolution time. A generalization of the Berry phase of the linear Schrodinger equation is formulated for the Hartree type equation. For the solutions constructed, the Berry phases are found in explicit form.
A trajectory isomorphism between the two Newtonian fixed center problem in the sphere and two associated planar two fixed center problems is constructed by performing two simultaneous gnomonic projections in $S^2$. This isomorphism converts the original quadratures into elliptic integrals and allows the bifurcation diagram of the spherical problem to be analyzed in terms of the corresponding ones of the planar systems. The dynamics along the orbits in the different regimes for the problem in $S^2$ is expressed in terms of Jacobi elliptic functions.
The orbits of Weyl groups W(A(n)) of simple A(n) type Lie algebras are reduced to the union of orbits of the Weyl groups of maximal reductive subalgebras of A(n). Matrices transforming points of the orbits of W(An) into points of subalgebra orbits are listed for all cases n<=8 and for the infinite series of algebra-subalgebra pairs A(n) - A(n-k-1) x A(k) x U(1), A(2n) - B(n), A(2n-1) - C(n), A(2n-1) - D(n). Numerous special cases and examples are shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا