Convergence of the perfectly matched layer method for transient acoustic-elastic interaction above an unbounded rough surface


Abstract in English

This paper is concerned with the time-dependent acoustic-elastic interaction problem associated with a bounded elastic body immersed in a homogeneous air or fluid above an unbounded rough surface. The well-posedness and stability of the problem are first established by using the Laplace transform and the energy method. A perfectly matched layer (PML) is then introduced to truncate the interaction problem above a finite layer containing the elastic body, leading to a PML problem in a finite strip domain. We further establish the existence, uniqueness and stability estimate of solutions to the PML problem. Finally, we prove the exponential convergence of the PML problem in terms of the thickness and parameter of the PML layer, based on establishing an error estimate between the DtN operators of the original problem and the PML problem.

Download