No Arabic abstract
This paper is concerned with the time-dependent acoustic-elastic interaction problem associated with a bounded elastic body immersed in a homogeneous air or fluid above an unbounded rough surface. The well-posedness and stability of the problem are first established by using the Laplace transform and the energy method. A perfectly matched layer (PML) is then introduced to truncate the interaction problem above a finite layer containing the elastic body, leading to a PML problem in a finite strip domain. We further establish the existence, uniqueness and stability estimate of solutions to the PML problem. Finally, we prove the exponential convergence of the PML problem in terms of the thickness and parameter of the PML layer, based on establishing an error estimate between the DtN operators of the original problem and the PML problem.
We consider the numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition. A Nystr{o}m method is proposed for the scattering problem based on the integral equation method. Convergence of the Nystr{o}m method is established with convergence rate depending on the smoothness of the rough surfaces. In doing so, a crucial role is played by analyzing the singularities of the kernels of the relevant boundary integral operators. Numerical experiments are presented to demonstrate the effectiveness of the method.
The optical resonance problem is similar to but different from time-steady Schr{o}dinger equation. One big challenge is that the eigenfunctions in resonance problem is exponentially growing. We give physical explanation to this boundary condition and introduce perfectly matched layer (PML) method to transform eigenfunctions from exponential-growth to exponential-decay. Based on the complex stretching technique, we construct a non-Hermitian Hamiltonian for the optical resonance problem. We successfully validate the effectiveness of the Hamiltonian by calculate its eigenvalues in the circular cavity and compare with the analytical results. We also use the proposed Hamiltonian to investigate the mode evolution around exceptional points in the quad-cosine cavity.
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coordinate stretching in the frequency domain. The well-posedness and the stability estimate of the PML problem are first proved based on the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Greens function for the Maxwell equations in the free space.
In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy method. Moreover, the $L^2$-norm and $L^{infty}$-norm error estimates in time are given between the solutions of the original scattering problem and the truncated PML problem, leading to the exponential convergence of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of the PML layer. The proof depends on the error analysis between the EtM operators for the original scattering problem and the truncated PML problem, which is different from our previous work (SIAM J. Numer. Anal. 58(3) (2020), 1918-1940).
This paper is concerned with the mathematical analysis of time-dependent fluid-solid interaction problem associated with a bounded elastic body immersed in a homogeneous air or fluid above a local rough surface. We reformulate the unbounded scattering problem into an equivalent initial-boundary value problem defined in a bounded domain by proposing a transparent boundary condition (TBC) on a hemisphere. Analyzing the reduced problem with Lax-Milgram lemma and abstract inversion theorem of Laplace transform, we prove the well-posedness and stability for the reduced problem. Moreover, an a priori estimate is established directly in the time domain for the acoustic wave and elastic displacement with using the energy method.