We introduce the concept of essential numerical range $W_{!e}(T)$ for unbounded Hilbert space operators $T$ and study its fundamental properties including possible equivalent characterizations and perturbation results. Many of the properties known for the bounded case do emph{not} carry over to the unbounded case, and new interesting phenomena arise which we illustrate by some striking examples. A key feature of the essential numerical range $W_{!e}(T)$ is that it captures spectral pollution in a unified and minimal way when approximating $T$ by projection methods or domain truncation methods for PDEs.