On the classification of graded twisted planes


Abstract in English

We use a representation of a graded twisted tensor product of $K[x]$ with $K[y]$ in $L(K^{Bbb{N}_0})$ in order to obtain a nearly complete classification of these graded twisted tensor products via infinite matrices. There is one particular example and three main cases: quadratic algebras classified by Conner and Goetz, a family called $A(n,d,a)$ with the $n+1$-extension property for $nge 2$, and a third case, not fully classified, which contains a family $B(a,L)$ parameterized by quasi-balanced sequences.

Download