Do you want to publish a course? Click here

A class of finite dimensional spaces and H(div) conformal elements on general polytopes

154   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a class of discretisation spaces and H(div)-conformal elements that can be built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the elements shape with the divergence properties of the Raviart-Thomas elements on the boundaries, the designed frameworks offer a wide range of H(div)-conformal discretisations. As those elements are set up through degrees of freedom, their definitions are easily amenable to the properties the approximated quantities are wished to fulfil. Furthermore, we show that one straightforward restriction of this general setting share its properties with the classical Raviart-Thomas elements at each interface, for any order and any polytopial shape. Then, we investigate the shape of the basis functions corresponding to particular elements in the two dimensional case.



rate research

Read More

Edge (or Nedelec) finite elements are theoretically sound and widely used by the computational electromagnetics community. However, its implementation, specially for high order methods, is not trivial, since it involves many technicalities that are not properly described in the literature. To fill this gap, we provide a comprehensive description of a general implementation of edge elements of first kind within the scientific software project FEMPAR. We cover into detail how to implement arbitrary order (i.e., $p$-adaptive) elements on hexahedral and tetrahedral meshes. First, we set the three classical ingredients of the finite element definition by Ciarlet, both in the reference and the physical space: cell topologies, polynomial spaces and moments. With these ingredients, shape functions are automatically implemented by defining a judiciously chosen polynomial pre-basis that spans the local finite element space combined with a change of basis to automatically obtain a canonical basis with respect to the moments at hand. Next, we discuss global finite element spaces putting emphasis on the construction of global shape functions through oriented meshes, appropriate geometrical mappings, and equivalence classes of moments, in order to preserve the inter-element continuity of tangential components of the magnetic field. Finally, we extend the proposed methodology to generate global curl-conforming spaces on non-conforming hierarchically refined (i.e., $h$-adaptive) meshes with arbitrary order finite elements. Numerical results include experimental convergence rates to test the proposed implementation.
We develop a general framework for construction and analysis of discrete extension operators with application to unfitted finite element approximation of partial differential equations. In unfitted methods so called cut elements intersected by the boundary occur and these elements must in general by stabilized in some way. Discrete extension operators provides such a stabilization by modification of the finite element space close to the boundary. More precisely, the finite element space is extended from the stable interior elements over the boundary in a stable way which also guarantees optimal approximation properties. Our framework is applicable to all standard nodal based finite elements of various order and regularity. We develop an abstract theory for elliptic problems and associated parabolic time dependent partial differential equations and derive a priori error estimates. We finally apply this to some examples of partial differential equations of different order including the interface problems, the biharmonic operator and the sixth order triharmonic operator.
314 - Xuehai Huang 2021
The $H^m$-conforming virtual elements of any degree $k$ on any shape of polytope in $mathbb R^n$ with $m, ngeq1$ and $kgeq m$ are recursively constructed by gluing conforming virtual elements on faces in a universal way. For the lowest degree case $k=m$, the set of degrees of freedom only involves function values and derivatives up to order $m-1$ at the vertices of the polytope. The inverse inequality and several norm equivalences for the $H^m$-conforming virtual elements are rigorously proved. The $H^m$-conforming virtual elements are then applied to discretize a polyharmonic equation with a lower order term. With the help of the interpolation error estimate and norm equivalences, the optimal error estimates are derived for the $H^m$-conforming virtual element method.
194 - S. K. Tomar 2013
An algebraic multilevel iteration method for solving system of linear algebraic equations arising in $H(mathrm{curl})$ and $H(mathrm{div})$ spaces are presented. The algorithm is developed for the discrete problem obtained by using the space of lowest order Nedelec and Raviart-Thomas-Nedelec elements. The theoretical analysis of the method is based only on some algebraic sequences and generalized eigenvalues of local (element-wise) problems. In the hierarchical basis framework, explicit recursion formulae are derived to compute the element matrices and the constant $gamma$ (which measures the quality of the space splitting) at any given level. It is proved that the proposed method is robust with respect to the problem parameters, and is of optimal order complexity. Supporting numerical results, including the case when the parameters have jumps, are also presented.
154 - R. Eymard 2020
In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass balance stabilization terms involving the pressure jumps across the edges of the mesh.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا