Impact of DCSB and dynamical diquark correlations on proton GPDs


Abstract in English

We calculate the leading-twist, helicity-independent generalized parton distributions (GPDs) of the proton, at finite skewness, in the Nambu--Jona-Lasinio (NJL) model of quantum chomodynamics (QCD). The NJL model reproduces low-energy characteristics of QCD, including dynamical chiral symmetry breaking (DCSB). The proton bound-state amplitude is solved for using the Faddeev equation in a quark-diquark approximation, including both dynamical scalar and axial vector diquarks. GPDs are calculated using a dressed non-local correlator, consistent with DCSB, which is obtained by solving a Bethe-Salpeter equation. The model and approximations used observe Lorentz covariance, and as a consequence the GPDs obey polynomiality sum rules. Extractions of electromagnetic and gravitational form factors are performed. We find a D-term of $-1.08$ when the non-local correlator is properly dressed, and $0.85$ when the bare correlator is used instead, suggesting that within this framework proton stability requires the constituent quarks to be dressed consistently with DCSB. We also find that the anomalous gravitomagnetic vanishes, as required by Poincar{e} symmetry.

Download