No Arabic abstract
Sub-damped Lyman alpha systems (subDLAs; HI column densities of 19.0<=logN(HI)<20.3) are rarely included in the cosmic HI census performed at redshifts z>=1.5, yet are expected to contribute significantly to the overall HI mass budget of the Universe. In this paper, we present a blindly selected sample of 155 subDLAs found along 100 quasar sightlines (with a redshift path length X=475) in the XQ-100 survey to investigate the contribution of subDLAs to the HI mass density of the Universe. The impact of X-Shooters spectral resolution on sub-DLA identification is evaluated, and found to be sufficient for reliably finding absorbers with logN(HI)>=18.9. We compared the implications of searching for subDLAs solely using HI absorption versus the use of additional metal lines to confirm the identification, and found that metal-selection techniques would have missed 75 subDLAs. Using a bootstrap-Monte Carlo simulation, we computed the column density distribution function (f(N,X)) and the cosmological HI mass density of subDLAs and compared with our previous work based on the XQ-100 damped Lyman alpha systems. We do not find any significant redshift evolution in f(N,X) or cosmological HI mass density for subDLAs. However, subDLAs contribute 10-20 per cent of the total cosmological HI mass density measured at redshifts 2<z<5 (agreeing with previous measurements), and thus have a small but significant contribution to the HI budget of the Universe.
The XQ-100 survey has provided high signal-noise spectra of 100 redshift 3-4.5 quasars with the X-Shooter spectrograph. The metal abundances for 13 elements in the 41 damped Lyman alpha systems (DLAs) identified in the XQ-100 sample are presented, and an investigation into abundances of a variety of DLA classes is conducted. The XQ-100 DLA sample contains five DLAs within 5000 km/s of their host quasar (proximate DLAs; PDLAs) as well as three sightlines which contain two DLAs within 10,000 km/s of each other along the same line-of-sight (multiple DLAs; MDLAs). Combined with previous observations in the literature, we demonstrate that PDLAs with logN(HI)<21.0 show lower [S/H] and [Fe/H] (relative to intervening systems with similar redshift and N(HI)), whilst higher [S/H] and [Si/H] are seen in PDLAs with logN(HI)>21.0. These abundance discrepancies are independent of their line-of-sight velocity separation from the host quasar, and the velocity width of the metal lines (v90). Contrary to previous studies, MDLAs show no difference in [alpha/Fe] relative to single DLAs matched in metallicity and redshift. In addition, we present follow-up UVES data of J0034+1639, a sightline containing three DLAs, including a metal-poor DLA with [Fe/H]=-2.82 (the third lowest [Fe/H] in DLAs identified to date) at z=4.25. Lastly we study the dust-corrected [Zn/Fe], emphasizing that near-IR coverage of X-Shooter provides unprecedented access to MgII, CaII and TiII lines (at redshifts 3-4) to provide additional evidence for subsolar [Zn/Fe] ratio in DLAs.
We present a sample of 38 intervening Damped Lyman $alpha$ (DLA) systems identified towards 100 $z>3.5$ quasars, observed during the XQ-100 survey. The XQ-100 DLA sample is combined with major DLA surveys in the literature. The final combined sample consists of 742 DLAs over a redshift range approximately $1.6 < z_{rm abs} < 5.0$. We develop a novel technique for computing $Omega_{rm HI}^{rm DLA}$ as a continuous function of redshift, and we thoroughly assess and quantify the sources of error therein, including fitting errors and incomplete sampling of the high column density end of the column density distribution function. There is a statistically significant redshift evolution in $Omega_{rm HI}^{rm DLA}$ ($geq 3 sigma$) from $z sim 2$ to $z sim$ 5. In order to make a complete assessment of the redshift evolution of $Omega_{rm HI}$, we combine our high redshift DLA sample with absorption surveys at intermediate redshift and 21cm emission line surveys of the local universe. Although $Omega_{rm HI}^{rm DLA}$, and hence its redshift evolution, remains uncertain in the intermediate redshift regime ($0.1 < z_{rm abs} < 1.6$), we find that the combination of high redshift data with 21cm surveys of the local universe all yield a statistically significant evolution in $Omega_{rm HI}$ from $z sim 0$ to $z sim 5$ ($geq 3 sigma$). Despite its statistical significance, the magnitude of the evolution is small: a linear regression fit between $Omega_{rm HI}$ and $z$ yields a typical slope of $sim$0.17$times 10^{-3}$, corresponding to a factor of $sim$ 4 decrease in $Omega_{rm HI}$ between $z=5$ and $z=0$.
We present the Lyman-$alpha$ flux power spectrum measurements of the XQ-100 sample of quasar spectra obtained in the context of the European Southern Observatory Large Programme Quasars and their absorption lines: a legacy survey of the high redshift universe with VLT/XSHOOTER. Using $100$ quasar spectra with medium resolution and signal-to-noise ratio we measure the power spectrum over a range of redshifts $z = 3 - 4.2$ and over a range of scales $k = 0.003 - 0.06,mathrm{s,km^{-1}}$. The results agree well with the measurements of the one-dimensional power spectrum found in the literature. The data analysis used in this paper is based on the Fourier transform and has been tested on synthetic data. Systematic and statistical uncertainties of our measurements are estimated, with a total error (statistical and systematic) comparable to the one of the BOSS data in the overlapping range of scales, and smaller by more than $50%$ for higher redshift bins ($z>3.6$) and small scales ($k > 0.01,mathrm{s,km^{-1}}$). The XQ-100 data set has the unique feature of having signal-to-noise ratios and resolution intermediate between the two data sets that are typically used to perform cosmological studies, i.e. BOSS and high-resolution spectra (e.g. UVES/VLT or HIRES). More importantly, the measured flux power spectra span the high redshift regime which is usually more constraining for structure formation models.
We study the H2 molecular content in high redshift damped Lyman-alpha systems (DLAs) as a function of the HI column density. We find a significant increase of the H2 molecular content around log N(HI) (cm^-2)~21.5-22, a regime unprobed until now in intervening DLAs, beyond which the majority of systems have log N(H2) > 17. This is in contrast with lines of sight towards nearby stars, where such H2 column densities are always detected as soon as log N(HI)>20.7. This can qualitatively be explained by the lower average metallicity and possibly higher surrounding UV radiation in DLAs. However, unlike in the Milky Way, the overall molecular fractions remain modest, showing that even at a large N(HI) only a small fraction of overall HI is actually associated with the self-shielded H2 gas. Damped Lyman-alpha systems with very high-N(HI) probably arise along quasar lines of sight passing closer to the centre of the host galaxy where the gas pressure is higher. We show that the colour changes induced on the background quasar by continuum (dust) and line absorption (HI Lyman and H2 Lyman & Werner bands) in DLAs with log N(HI)~22 and metallicity ~1/10 solar is significant, but not responsible for the long-discussed lack of such systems in optically selected samples. Instead, these systems are likely to be found towards intrinsically fainter quasars that dominate the quasar luminosity function. Colour biasing should in turn be severe at higher metallicities.