Digitally virtualized atoms for acoustic metamaterials


Abstract in English

By designing tailor-made resonance modes with structured atoms, metamaterials allow us to obtain constitutive parameters outside their limited range from natural or composite materials. Nonetheless, tuning the constitutive parameters relies much on our capability in modifying the physical structures or media in constructing the metamaterial atoms, posing a fundamental challenge to the range of tunability in many real-time applications. Here, we propose a completely new notion of virtualized metamaterials to lift the traditional boundary inherent to the physical structure of a metamaterial atom. By replacing the resonating physical structure with a designer mathematical convolution kernel with a fast digital signal processing circuit, we show that a decoupled control of the effective bulk modulus and density of the metamaterial is possible on-demand through a software-defined frequency dispersion. Purely noninterfering to the incident wave in the off-mode operation while providing freely reconfigurable amplitude, center frequency, bandwidth, and phase delay of frequency dispersion in on-mode, our approach adds an additional dimension to wave molding and can work as an essential building block for time-varying metamaterials.

Download