No Arabic abstract
We study 3D pure Einstein quantum gravity with negative cosmological constant, in the regime where the AdS radius $l$ is of the order of the Planck scale. Specifically, when the Brown-Henneaux central charge $c=3l/2G_N$ ($G_N$ is the 3D Newton constant) equals $c=1/2$, we establish duality between 3D gravity and 2D Ising conformal field theory by matching gravity and conformal field theory partition functions for AdS spacetimes with general asymptotic boundaries. This duality was suggested by a genus-one calculation of Castro et al. [Phys. Rev. D {bf 85}, 024032 (2012)]. Extension beyond genus-one requires new mathematical results based on 3D Topological Quantum Field Theory; these turn out to uniquely select the $c=1/2$ theory among all those with $c<1$, extending the previous results of Castro et al.. Previous work suggests the reduction of the calculation of the gravity partition function to a problem of summation over the orbits of the mapping class group action on a vacuum seed. But whether or not the summation is well-defined for the general case was unknown before this work. Amongst all theories with Brown-Henneaux central charge $c<1$, the sum is finite and unique {it only} when $c=1/2$, corresponding to a dual Ising conformal field theory on the asymptotic boundary.
We compute genus two partition functions in two dimensional conformal field theories at large central charge, focusing on surfaces that give the third Renyi entropy of two intervals. We compute this for generalized free theories and for symmetric orbifolds, and compare it to the result in pure gravity. We find a new phase transition if the theory contains a light operator of dimension $Deltaleq0.19$. This means in particular that unlike the second Renyi entropy, the third one is no longer universal.
We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an AdS spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.
The partition function of a three-dimensional $mathcal{N} =2$ theory on the manifold $mathcal{M}_{g,p}$, an $S^1$ bundle of degree $p$ over a closed Riemann surface $Sigma_g$, was recently computed via supersymmetric localization. In this paper, we compute these partition functions at large $N$ in a class of quiver gauge theories with holographic M-theory duals. We provide the supergravity bulk dual having as conformal boundary such three-dimensional circle bundles. These configurations are solutions to $mathcal{N}=2$ minimal gauged supergravity and pertain to the class of Taub-NUT-AdS and Taub-Bolt-AdS preserving $1/4$ of the supersymmetries. We discuss the conditions for the uplift of these solutions to M-theory, and compute the on-shell action via holographic renormalization. We show that the uplift condition and on-shell action for the Bolt solutions are correctly reproduced by the large $N$ limit of the partition function of the dual superconformal field theory. In particular, the $Sigma_g times S^1 cong mathcal{M}_{g,0}$ partition function, which was recently shown to match the entropy of $AdS_4$ black holes, and the $S^3 cong mathcal{M}_{0,1}$ free energy, occur as special cases of our formalism, and we comment on relations between them.
We push forward the investigation of holographic dualities in 3D quantum gravity formulated as a topological quantum field theory, studying the correspondence between boundary and bulk structures. Working with the Ponzano-Regge topological state-sum model defining an exact discretization of 3d quantum gravity, we analyze how the partition function for a solid twisted torus depends on the boundary quantum state. This configuration is relevant to the AdS${}_{3}$/CFT${}_{2}$ correspondence. We introduce boundary spin network states with coherent superposition of spins on a square lattice on the boundary surface. This allows for the first exact analytical calculation of Ponzano-Regge amplitudes with extended 2D boundary (beyond the single tetrahedron). We get a regularized finite truncation of the BMS character formula obtained from the one-loop perturbative quantization of 3D gravity. This hints towards the existence of an underlying symmetry and the integrability of the theory for finite boundary at the quantum level for coherent boundary spin network states.
We propose a set of novel expansions of Nekrasovs instanton partition functions. Focusing on 5d supersymmetric pure Yang-Mills theory with unitary gauge group on $mathbb{C}^2_{q,t^{-1}} times mathbb{S}^1$, we show that the instanton partition function admits expansions in terms of partition functions of unitary gauge theories living on the 3d subspaces $mathbb{C}_{q} times mathbb{S}^1$, $mathbb{C}_{t^{-1}} times mathbb{S}^1$ and their intersection along $mathbb{S}^1$. These new expansions are natural from the BPS/CFT viewpoint, as they can be matched with $W_{q,t}$ correlators involving an arbitrary number of screening charges of two kinds. Our constructions generalize and interpolate existing results in the literature.