Do you want to publish a course? Click here

Posterior Predictive Treatment Assignment Methods for Causal Inference in the Context of Time-Varying Treatments

117   0   0.0 ( 0 )
 Added by Shirley Liao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Marginal structural models (MSM) with inverse probability weighting (IPW) are used to estimate causal effects of time-varying treatments, but can result in erratic finite-sample performance when there is low overlap in covariate distributions across different treatment patterns. Modifications to IPW which target the average treatment effect (ATE) estimand either introduce bias or rely on unverifiable parametric assumptions and extrapolation. This paper extends an alternate estimand, the average treatment effect on the overlap population (ATO) which is estimated on a sub-population with a reasonable probability of receiving alternate treatment patterns in time-varying treatment settings. To estimate the ATO within a MSM framework, this paper extends a stochastic pruning method based on the posterior predictive treatment assignment (PPTA) as well as a weighting analogue to the time-varying treatment setting. Simulations demonstrate the performance of these extensions compared against IPW and stabilized weighting with regard to bias, efficiency and coverage. Finally, an analysis using these methods is performed on Medicare beneficiaries residing across 18,480 zip codes in the U.S. to evaluate the effect of coal-fired power plant emissions exposure on ischemic heart disease hospitalization, accounting for seasonal patterns that lead to change in treatment over time.



rate research

Read More

142 - Shuo Sun , Erica E. M. Moodie , 2021
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, rather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE) -- the weighted QTE (WQTE) -- of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score. Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare propensity score regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.
We propose novel estimators for categorical and continuous treatments by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, we show that the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. Our analysis of a data set suggests a nonlinear effect of BMI on the decline in self reported health.
72 - Michael Pollmann 2020
I propose a framework, estimators, and inference procedures for the analysis of causal effects in a setting with spatial treatments. Many events and policies (treatments), such as opening of businesses, building of hospitals, and sources of pollution, occur at specific spatial locations, with researchers interested in their effects on nearby individuals or businesses (outcome units). However, the existing treatment effects literature primarily considers treatments that could be assigned directly at the level of the outcome units, potentially with spillover effects. I approach the spatial treatment setting from a similar experimental perspective: What ideal experiment would we design to estimate the causal effects of spatial treatments? This perspective motivates a comparison between individuals near realized treatment locations and individuals near unrealized candidate locations, which is distinct from current empirical practice. Furthermore, I show how to find such candidate locations and apply the proposed methods with observational data. I apply the proposed methods to study the causal effects of grocery stores on foot traffic to nearby businesses during COVID-19 lockdowns.
105 - Licheng Liu , Ye Wang , 2021
This paper introduces a unified framework of counterfactual estimation for time-series cross-sectional data, which estimates the average treatment effect on the treated by directly imputing treated counterfactuals. Examples include the fixed effects counterfactual estimator, interactive fixed effects counterfactual estimator, and matrix completion estimator. These estimators provide more reliable causal estimates than conventional twoway fixed effects models when treatment effects are heterogeneous or unobserved time-varying confounders exist. Under this framework, we propose a new dynamic treatment effects plot, as well as several diagnostic tests, to help researchers gauge the validity of the identifying assumptions. We illustrate these methods with two political economy examples and develop an open-source package, fect, in both R and Stata to facilitate implementation.
Understanding how treatment effects vary on individual characteristics is critical in the contexts of personalized medicine, personalized advertising and policy design. When the characteristics are of practical interest are only a subset of full covariate, non-parametric estimation is often desirable; but few methods are available due to the computational difficult. Existing non-parametric methods such as the inverse probability weighting methods have limitations that hinder their use in many practical settings where the values of propensity scores are close to 0 or 1. We propose the propensity score regression (PSR) that allows the non-parametric estimation of the heterogeneous treatment effects in a wide context. PSR includes two non-parametric regressions in turn, where it first regresses on the propensity scores together with the characteristics of interest, to obtain an intermediate estimate; and then, regress the intermediate estimates on the characteristics of interest only. By including propensity scores as regressors in the non-parametric manner, PSR is capable of substantially easing the computational difficulty while remain (locally) insensitive to any value of propensity scores. We present several appealing properties of PSR, including the consistency and asymptotical normality, and in particular the existence of an explicit variance estimator, from which the analytical behaviour of PSR and its precision can be assessed. Simulation studies indicate that PSR outperform existing methods in varying settings with extreme values of propensity scores. We apply our method to the national 2009 flu survey (NHFS) data to investigate the effects of seasonal influenza vaccination and having paid sick leave across different age groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا