No Arabic abstract
We predict the twist-2 Transverse Momentum Dependent parton distribution functions (TMDs) of the pion, namely the unpolarized quark TMD, $f_{1}(x, k_perp)$, and the transversely polarized quark TMD, also known as the Boer-Mulders function, $h^perp_{1}(x, k_perp)$, using a holographic light-front pion wavefunction with dynamical spin effects. These spin effects, in conjunction with gluon rescattering, are crucial to predict a non-zero holographic Boer-Mulders function. We investigate the use of a non-perturbative SU(3) gluon rescattering kernel, thus going beyond the usual approximation of perturbative U(1) gluons. We find that the non-perturbative color dynamics offer a more promising way to describe the available lattice data on the generalized Boer-Mulders shifts.
We construct spin-improved holographic light-front wavefunctions for the nucleons (viewed as quark-diquark systems) and use them to successfully predict their electromagnetic Sachs form factors, their electromagnetic charge radii, as well as the axial form factor, charge and radius of the proton. The confinement scale is the universal mass scale of light-front holography, previously extracted from spectroscopic data for light hadrons. With the Dirac and Pauli form factors normalized using the quark counting rules and the measured anomalous magnetic moments respectively, the masses of the quark and diquark are the only remaining adjustable parameters. We fix them using the data set for the protons Dirac-to-Pauli form factor ratio, and then predict all other data without any further adjustments of parameters. Agreement with data at low momentum-transfer is excellent. Our findings support the idea that light (pseudoscalar and vector) mesons and the nucleons share a non-perturbative universal holographic light-front wavefunction which is modified differently by their spin structures.
The holographic light-front QCD framework provides a unified nonperturbative description of the hadron mass spectrum, form factors and quark distributions. In this article we extend holographic QCD in order to describe the gluonic distribution in both the proton and pion from the coupling of the metric fluctuations induced by the spin-two Pomeron with the energy momentum tensor in anti-de Sitter space, together with constraints imposed by the Veneziano model without additional free parameters. The gluonic and quark distributions are shown to have significantly different effective QCD scales.
The structure of the pion wave function in the relativistic constituent quark model is investigated in the explicitly covariant formulation of light-front dynamics. We calculate the two relativistic components of the pion wave function in a simple one-gluon exchange model and investigate various physical observables: decay constant, charge radius, electromagnetic and transition form factors. We discuss the influence of the full relativistic structure of the pion wave function for an overall good description of all these observables, including both low and high momentum scales.
The pion properties in symmetric nuclear matter are investigated with the Quark-Meson Coupling (QMC) Model plus the light-front constituent quark model~(LFCQM). The LFCQM has been quite successful in describing the properties of pseudoscalar mesons in vacuum, such as the electromagnetic elastic form factors, electromagnetic radii, and decay constants. We study the pion properties in symmetric nuclear matter with the in-medium input recalculated through the QMC model, which provides the in-medium modification of the LFCQM.
We explore the link between the chiral symmetry of QCD and the numerical results of the light-front quark model, analyzing both the two-point and three-point functions of the pion. Including the axial-vector coupling as well as the pseudoscalar coupling in the light-front quark model, we discuss the implication of the chiral anomaly in describing the pion decay constant, the pion-photon transition form factor and the electromagnetic form factor of the pion. In constraining the model parameters, we find that the chiral anomaly plays a critical role and the analysis of $F_{pigamma}(Q^2)$ in timelike region is important. Our results indicate that the constituent quark picture is effective for the low and high $Q^2$ ranges implementing the quark mass evolution effect as $Q^2$ grows.