Floquet-engineered vibrational dynamics in a two-dimensional array of trapped ions


Abstract in English

We demonstrate Floquet engineering in a basic yet scalable 2D architecture of individually trapped and controlled ions. Local parametric modulations of detuned trapping potentials steer the strength of long-range inter-ion couplings and the related Peierls phase of the motional state. In our proof-of-principle, we initialize large coherent states and tune modulation parameters to control trajectories, directions and interferences of the phonon flow. Our findings open a new pathway for future Floquet-based trapped-ion quantum simulators targeting correlated topological phenomena and dynamical gauge fields.

Download