Do you want to publish a course? Click here

Entropy and Energy of Static Spherically Symmetric Black Hole in $f(R)$ theory

74   0   0.0 ( 0 )
 Added by Rong-Jia Yang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the new horizon first law in $f(R)$ theory with general spherically symmetric black hole. We derive the general formulas to computed the entropy and energy of the black hole. For applications, some nontrivial black hole solutions in some popular $f(R)$ theories are investigated, the entropies and the energies of black holes in these models are first calculated.



rate research

Read More

77 - G.G.L. Nashed 2021
We show, in detail, that the only non-trivial black hole (BH) solutions for a neutral as well as a charged spherically symmetric space-times, using the class ${textit F(R)}={textit R}pm{textit F_1 (R)} $, must-have metric potentials in the form $h(r)=frac{1}{2}-frac{2M}{r}$ and $h(r)=frac{1}{2}-frac{2M}{r}+frac{q^2}{r^2}$. These BHs have a non-trivial form of Ricci scalar, i.e., $R=frac{1}{r^2}$ and the form of ${textit F_1 (R)}=mpfrac{sqrt{textit R}} {3M} $. We repeat the same procedure for (Anti-)de Sitter, (A)dS, space-time and got the metric potentials of neutral as well as charged in the form $h(r)=frac{1}{2}-frac{2M}{r}-frac{2Lambda r^2} {3} $ and $h(r)=frac{1}{2}-frac{2M}{r}+frac{q^2}{r^2}-frac{2Lambda r^2} {3} $, respectively. The Ricci scalar of the (A)dS space-times has the form ${textit R}=frac{1+8r^2Lambda}{r^2}$ and the form of ${textit F_1(R)}=mpfrac{textit 2sqrt{R-8Lambda}}{3M}$. We calculate the thermodynamical quantities, Hawking temperature, entropy, quasi-local energy, and Gibbs-free energy for all the derived BHs, that behaves asymptotically as flat and (A)dS, and show that they give acceptable physical thermodynamical quantities consistent with the literature. Finally, we prove the validity of the first law of thermodynamics for those BHs.
We consider whether the new horizon-first law works in higher-dimensional $f(R)$ theory. We firstly obtain the general formulas to calculate the entropy and the energy of a general spherically-symmetric black hole in $D$-dimensional $f(R)$ theory. For applications, we compute the entropies and the energies of some black hokes in some interesting higher-dimensional $f(R)$ theories.
With the advent of gravitational wave astronomy and first pictures of the shadow of the central black hole of our milky way, theoretical analyses of black holes (and compact objects mimicking them sufficiently closely) have become more important than ever. The near future promises more and more detailed information about the observable black holes and black hole candidates. This information could lead to important advances on constraints on or evidence for modifications of general relativity. More precisely, we are studying the influence of weak teleparallel perturbations on general relativistic vacuum spacetime geometries in spherical symmetry. We find the most general family of spherically symmetric, static vacuum solutions of the theory, which are candidates for describing teleparallel black holes which emerge as perturbations to the Schwarzschild black hole. We compare our findings to results on black hole or static, spherically symmetric solutions in teleparallel gravity discussed in the literature, by comparing the predictions for classical observables such as the photon sphere, the perihelion shift, the light deflection, and the Shapiro delay. On the basis of these observables, we demonstrate that among the solutions we found, there exist spacetime geometries that lead to much weaker bounds on teleparallel gravity than those found earlier. Finally, we move on to a discussion of how the teleparallel perturbations influence the Hawking evaporation in these spacetimes.
83 - Chao Zhang , Xiang Zhao , Kai Lin 2020
In this paper, we systematically study spherically symmetric static spacetimes in the framework of Einstein-aether theory, and pay particular attention to the existence of black holes (BHs). In the present studies we first clarify several subtle issues. In particular, we find that, out of the five non-trivial field equations, only three are independent, so the problem is well-posed, as now generically there are only three unknown functions, {$F(r), B(r), A(r)$, where $F$ and $B$ are metric coefficients, and $A$ describes the aether field.} In addition, the two second-order differential equations for $A$ and $F$ are independent of $B$, and once they are found, $B$ is given simply by an algebraic expression of $F,; A$ and their derivatives. To simplify the problem further, we explore the symmetry of field redefinitions, and work first with the redefined metric and aether field, and then obtain the physical ones by the inverse transformations. These clarifications significantly simplify the computational labor, which is important, as the problem is highly involved mathematically. In fact, it is exactly because of these, we find various numerical BH solutions with an accuracy that is at least two orders higher than previous ones. More important, these BH solutions are the only ones that satisfy the self-consistent conditions and meantime are consistent with all the observational constraints obtained so far. The locations of universal horizons are also identified, together with several other observationally interesting quantities, such as the innermost stable circular orbits (ISCO), the ISCO frequency, and the maximum redshift $z_{max}$ of a photon emitted by a source orbiting the ISCO. All of these quantities are found to be quite close to their relativistic limits.
97 - G.G.L. Nashed , S. Nojiri 2020
Recent observation shows that general relativity (GR) is not valid in the strong regime. $mathit{f(R)}$ gravity where $mathit{R}$ is the Ricci scalar, is regarded to be one of good candidates able to cure the anomalies appeared in the conventional general relativity. In this realm, we apply the equation of motions of $mathit{f(R)}$ gravity to a spherically symmetric spacetime with two unknown functions and derive original black hole (BH) solutions without any constrains on the Ricci scalar as well as on the form of $mathit{f(R)}$ gravity. Those solutions depend on a convolution function and are deviating from the Schwarzschild solution of the Einstein GR. These solutions are characterized by the gravitational mass of the system and the convolution function that in the asymptotic form gives extra terms that are responsible to make such BHs different from GR. Also, we show that these extra terms make the singularities of the invariants much weaker than those of the GR BH. We analyze such BHs using the trend of thermodynamics and show their consistency with the well known quantities in thermodynamics like the Hawking radiation, entropy and quasi-local energy. We also show that our BH solutions satisfy the first law of thermodynamics. Moreover, we study the stability analysis using the odd-type mode and shows that all the derived BHs are stable and have radial speed equal to one. Finally, using the geodesic deviations we derive the stability conditions of these BHs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا