Do you want to publish a course? Click here

The Landscape of Non-convex Empirical Risk with Degenerate Population Risk

70   0   0.0 ( 0 )
 Added by Shuang Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The landscape of empirical risk has been widely studied in a series of machine learning problems, including low-rank matrix factorization, matrix sensing, matrix completion, and phase retrieval. In this work, we focus on the situation where the corresponding population risk is a degenerate non-convex loss function, namely, the Hessian of the population risk can have zero eigenvalues. Instead of analyzing the non-convex empirical risk directly, we first study the landscape of the corresponding population risk, which is usually easier to characterize, and then build a connection between the landscape of the empirical risk and its population risk. In particular, we establish a correspondence between the critical points of the empirical risk and its population risk without the strongly Morse assumption, which is required in existing literature but not satisfied in degenerate scenarios. We also apply the theory to matrix sensing and phase retrieval to demonstrate how to infer the landscape of empirical risk from that of the corresponding population risk.



rate research

Read More

Spectral methods include a family of algorithms related to the eigenvectors of certain data-generated matrices. In this work, we are interested in studying the geometric landscape of the eigendecomposition problem in various spectral methods. In particular, we first extend known results regarding the landscape at critical points to larger regions near the critical points in a special case of finding the leading eigenvector of a symmetric matrix. For a more general eigendecomposition problem, inspired by recent findings on the connection between the landscapes of empirical risk and population risk, we then build a novel connection between the landscape of an eigendecomposition problem that uses random measurements and the one that uses the true data matrix. We also apply our theory to a variety of low-rank matrix optimization problems and conduct a series of simulations to illustrate our theoretical findings.
In this paper, we consider the problem of equal risk pricing and hedging in which the fair price of an option is the price that exposes both sides of the contract to the same level of risk. Focusing for the first time on the context where risk is measured according to convex risk measures, we establish that the problem reduces to solving independently the writer and the buyers hedging problem with zero initial capital. By further imposing that the risk measures decompose in a way that satisfies a Markovian property, we provide dynamic programming equations that can be used to solve the hedging problems for both the case of European and American options. All of our results are general enough to accommodate situations where the risk is measured according to a worst-case risk measure as is typically done in robust optimization. Our numerical study illustrates the advantages of equal risk pricing over schemes that only account for a single party, pricing based on quadratic hedging (i.e. $epsilon$-arbitrage pricing), or pricing based on a fixed equivalent martingale measure (i.e. Black-Scholes pricing). In particular, the numerical results confirm that when employing an equal risk price both the writer and the buyer end up being exposed to risks that are more similar and on average smaller than what they would experience with the other approaches.
Despite the simplicity and intuitive interpretation of Minimum Mean Squared Error (MMSE) estimators, their effectiveness in certain scenarios is questionable. Indeed, minimizing squared errors on average does not provide any form of stability, as the volatility of the estimation error is left unconstrained. When this volatility is statistically significant, the difference between the average and realized performance of the MMSE estimator can be drastically different. To address this issue, we introduce a new risk-aware MMSE formulation which trades between mean performance and risk by explicitly constraining the expected predictive variance of the involved squared error. We show that, under mild moment boundedness conditions, the corresponding risk-aware optimal solution can be evaluated explicitly, and has the form of an appropriately biased nonlinear MMSE estimator. We further illustrate the effectiveness of our approach via several numerical examples, which also showcase the advantages of risk-aware MMSE estimation against risk-neutral MMSE estimation, especially in models involving skewed, heavy-tailed distributions.
We lower bound the complexity of finding $epsilon$-stationary points (with gradient norm at most $epsilon$) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least $epsilon^{-4}$ queries to find an $epsilon$ stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of $epsilon^{-3}$ queries, establishing the optimality of recently proposed variance reduction techniques.
We study the differentially private Empirical Risk Minimization (ERM) and Stochastic Convex Optimization (SCO) problems for non-smooth convex functions. We get a (nearly) optimal bound on the excess empirical risk and excess population loss with subquadratic gradient complexity. More precisely, our differentially private algorithm requires $O(frac{N^{3/2}}{d^{1/8}}+ frac{N^2}{d})$ gradient queries for optimal excess empirical risk, which is achieved with the help of subsampling and smoothing the function via convolution. This is the first subquadratic algorithm for the non-smooth case when $d$ is super constant. As a direct application, using the iterative localization approach of Feldman et al. cite{fkt20}, we achieve the optimal excess population loss for stochastic convex optimization problem, with $O(min{N^{5/4}d^{1/8},frac{ N^{3/2}}{d^{1/8}}})$ gradient queries. Our work makes progress towards resolving a question raised by Bassily et al. cite{bfgt20}, giving first algorithms for private ERM and SCO with subquadratic steps. We note that independently Asi et al. cite{afkt21} gave other algorithms for private ERM and SCO with subquadratic steps.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا