Do you want to publish a course? Click here

Dimensionality reduction and band quantization induced by potassium intercalation in 1$T$-HfTe$_2$

118   0   0.0 ( 0 )
 Added by Yuki Nakata
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed angle-resolved photoemission spectroscopy on transition-metal dichalcogenide 1$T$-HfTe$_2$ to elucidate the evolution of electronic states upon potassium (K) deposition. In pristine HfTe$_2$, an in-plane hole pocket and electron pockets are observed at the Brillouin-zone center and corner, respectively, indicating the semimetallic nature of bulk HfTe$_2$, with dispersion perpendicular to the plane. In contrast, the band structure of heavily K-dosed HfTe$_2$ is obviously different from that of bulk, and resembles the band structure calculated for monolayer HfTe$_2$. It was also observed that lightly K-dosed HfTe$_2$ is characterized by quantized bands originating from bilayer and trilayer HfTe$_2$, indicative of staging. The results suggest that the dimensionality-crossover from 3D (dimensional) to 2D electronic states due to systematic K intercalation takes place via staging in a single sample. The study provides a new strategy for controlling the dimensionality and functionality of novel quantum materials.



rate research

Read More

By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe$_2$ has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p-orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV respectively. Our calculations indicate that such behaviour is driven by the band deformation potential, which is a result of our observed anisotropic strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory (DFT) agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between doping and strain, as well as for large-scale two-dimensional straintronics.
The dosing of layered materials with alkali metals has become a commonly used strategy in ARPES experiments. However, precisely what occurs under such conditions, both structurally and electronically, has remained a matter of debate. Here we perform a systematic study of 1T-HfTe$_2$, a prototypical semimetal of the transition metal dichalcogenide family. By utilizing photon energy-dependent angle-resolved photoemission spectroscopy (ARPES), we have investigated the electronic structure of this material as a function of Potassium (K) deposition. From the k$_z$ maps, we observe the appearance of 2D dispersive bands after electron dosing, with an increasing sharpness of the bands, consistent with the wavefunction confinement at the topmost layer. In our highest-dosing cases, a monolayer-like electronic structure emerges, presumably as a result of intercalation of the alkali metal. Here, by bringing the topmost valence band below $E_F$, we can directly measure a band overlap of $sim$ 0.2 eV. However, 3D bulk-like states still contribute to the spectra even after considerable dosing. Our work provides a reference point for the increasingly popular studies of the alkali metal dosing of semimetals using ARPES.
SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interests due to its excellent thermoelectric properties and potential device applications. Experimental electronic structure of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices.
Rubidium adsorption on the surface of the topological insulator Bi$_2$Se$_3$ is found to induce a strong downward band bending, leading to the appearance of a quantum-confined two dimensional electron gas states (2DEGs) in the conduction band. The 2DEGs shows a strong Rashba-type spin-orbit splitting, and it has previously been pointed out that this has relevance to nano-scale spintronics devices. The adsorption of Rb atoms, on the other hand, renders the surface very reactive and exposure to oxygen leads to a rapid degrading of the 2DEGs. We show that intercalating the Rb atoms, presumably into the van der Waals gaps in the quintuple layer structure of Bi$_2$Se$_3$, drastically reduces the surface reactivity while not affecting the promising electronic structure. The intercalation process is observed above room temperature and accelerated with increasing initial Rb coverage, an effect that is ascribed to the Coulomb interaction between the charged Rb ions. Coulomb repulsion is also thought to be responsible for a uniform distribution of Rb on the surface.
Cobalt and manganese ions are implanted into SiO$_2$ over a wide range of concentrations. For low concentrations, the Co atoms occupy interstitial locations, coordinated with oxygen, while metallic Co clusters form at higher implantation concentrations. For all concentrations studied here, Mn ions remain in interstitial locations and do not cluster. Using resonant x-ray emission spectroscopy and Anderson impurity model calculations, we determine the strength of the covalent interaction between the interstitial ions and the SiO$_2$ valence band, finding it comparable to Mn and Co monoxides. Further, we find an increasing reduction in the SiO$_2$ electronic band gap for increasing implantation concentration, due primarily to the introduction of Mn- and Co-derived conduction band states. We also observe a strong increase in a band of x-ray stimulated luminescence at 2.75 eV after implantation, attributed to oxygen deficient centers formed during implantation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا