No Arabic abstract
We used the Plateau De Bure Interferometer to observe multiple CO and neutral carbon transitions in a z=2.2 main sequence disk galaxy, BX610. Our observation of CO(7-6), CO(4-3), and both far-infrared(FIR) [CI] lines complements previous observations of H$alpha$ and low-J CO, and reveals a galaxy that is vigorously forming stars with UV fields (Log($G$ G$_0^{-1}) lesssim3.25);$ although less vigorously than local ultra-luminous infrared galaxies or most starbursting submillimeter galaxies in the early universe. Our observations allow new independent estimates of the cold gas mass which indicate $M_textrm{gas}sim2times10^{11}$M$_odot$, and suggest a modestly larger $alpha_{textrm{CO}}$ value of $sim$8.2. The corresponding gas depletion timescale is $sim$1.5 Gyr. In addition to gas of modest density (Log($n$ cm$^3)lesssim3$ ) heated by star formation, BX610 shows evidence for a significant second gas component responsible for the strong high-J CO emission. This second component might either be a high-density molecular gas component heated by star formation in a typical photodissociation region, or could be molecular gas excited by low-velocity C shocks. The CO(7-6)-to-FIR luminosity ratio we observe is significantly higher than typical star-forming galaxies and suggests that CO(7-6) is not a reliable star-formation tracer in this galaxy.
We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4<z<2.5$ in the COSMOS field. The main focus is on the SFRs from the far-IR (PACS-Herschel data) with those from the ultraviolet, for galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR-stellar mass ($M_*$) relation, compared to that of the dominant main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{$M_*$} relation is $sim0.8-0.9$, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24$mu$m-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the $B$ band. The combination of Herschel with Spitzer data have allowed us to largely break the age/reddening degeneracy for these intriguing sources, by distinguishing whether a galaxy is very red in B-z because of being heavily dust reddened, or whether because star formation has been (or is being) quenched. Finally, we have compared our SFR(UV) to the SFRs derived by stacking the radio data and to those derived from the H$alpha$ luminosity of a sample of star-forming galaxies at $1.4<z<1.7$. The two sets of SFRs are broadly consistent as they are with the SFRs derived from the UV and by stacking the corresponding PACS data in various mass bins.
Using a compilation of 25 studies from the literature, we investigate the evolution of the star-forming galaxy (SFG) Main Sequence (MS) in stellar mass and star formation rate (SFR) out to $z sim 6$. After converting all observations to a common set of calibrations, we find a remarkable consensus among MS observations ($sim 0.1$ dex 1$sigma$ interpublication scatter). By fitting for time evolution of the MS in bins of constant mass, we deconvolve the observed scatter about the MS within each observed redshift bins. After accounting for observed scatter between different SFR indicators, we find the width of the MS distribution is $sim 0.2$ dex and remains constant over cosmic time. Our best fits indicate the slope of the MS is likely time-dependent, with our best fit $logtextrm{SFR}(M_*,t) = left(0.84 pm 0.02 - 0.026 pm 0.003 times tright) log M_* - left(6.51 pm 0.24 - 0.11 pm 0.03 times tright)$, with $t$ the age of the Universe in Gyr. We use our fits to create empirical evolutionary tracks in order to constrain MS galaxy star formation histories (SFHs), finding that (1) the most accurate representations of MS SFHs are given by delayed-$tau$ models, (2) the decline in fractional stellar mass growth for a typical MS galaxy today is approximately linear for most of its lifetime, and (3) scatter about the MS can be generated by galaxies evolving along identical evolutionary tracks assuming an initial $1sigma$ spread in formation times of $sim 1.4$ Gyr.
We present results on the environmental dependence of the star-forming galaxy main sequence in 11 galaxy cluster fields at $1.0 < z < 1.5$ from the Gemini Observations of Galaxies in Rich Early Environments Survey (GOGREEN) survey. We use a homogeneously selected sample of field and cluster galaxies whose membership is derived from dynamical analysis. Using [OII]-derived star formation rates (SFRs), we find that cluster galaxies have suppressed SFRs at fixed stellar mass in comparison to their field counterparts by a factor of 1.4 $pm$ 0.1 ($sim3.3sigma$) across the stellar mass range: $9.0 < log(M_{*} /M_{odot}) < 11.2$. We also find that this modest suppression in the cluster galaxy star-forming main sequence is mass and redshift dependent: the difference between cluster and field increases towards lower stellar masses and lower redshift. When comparing the distribution of cluster and field galaxy SFRs to the star-forming main sequence, we find an overall shift towards lower SFRs in the cluster population, and note the absence of a tail of high SFR galaxies as seen in the field. Given this observed suppression in the cluster galaxy star-forming main sequence, we explore the implications for several scenarios such as formation time differences between cluster and field galaxies, and environmentally-induced star formation quenching and associated timescales.
We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama Large Millimeter/submillimeter Array (ALMA) observations. The blueshifted OH+ line is observed simultaneously with the CO(9-8) emission line and underlying dust continuum. These data are complemented by high angular resolution (0.17x0.13) ALMA observations of CH+(1-0) and underlying dust continuum, and Keck 2.2 micron imaging tracing the stellar emission. The neutral outflow, dust, dense molecular gas and stars all show spatial offsets from each other. The total atomic gas mass of the observed outflow is 6.7x10^9 M_sun, >25% as massive as the gas mass of the galaxy. We find that a conical outflow geometry best describes the OH+ kinematics and morphology and derive deprojected outflow properties as functions of possible inclination (0.38 deg-64 deg). The neutral gas mass outflow rate is between 83-25400 M_sun/yr, exceeding the star formation rate (788+/-300 M_sun/yr) if the inclination is >3.6 deg (mass-loading factor = 0.3-4.7). Kinetic energy and momentum fluxes span 4.4-290x10^9 L_sun and 0.1-3.7x10^37 dyne, respectively (energy-loading factor = 0.013-16), indicating that the feedback mechanisms required to drive the outflow depend on the inclination assumed. We derive a gas depletion time between 29 and 1 Myr, but find that the neutral outflow is likely to remain bound to the galaxy, unless the inclination is small, and may be re-accreted if additional feedback processes do not occur.
We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few $10^9$ Msun, in the strongly gravitationally lensed submillimeter galaxy the Emerald (PLCK_G165.7+49.0) at z=2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5 and 21 formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z=0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4-3) line and 850 $mu$m dust emission to characterize the foreground lensing mass distribution, construct a lens model with Lenstool, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a $9 times 10^{10}$ Msun, fragmented disk with 20% gas fraction. One of the clumps shows a pronounced blue wing in the CO(4-3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of -200 km s$^{-1}$ is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.