Do you want to publish a course? Click here

Decentralized Gaussian Mixture Fusion through Unified Quotient Approximations

426   0   0.0 ( 0 )
 Added by Nisar Ahmed
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This work examines the problem of using finite Gaussian mixtures (GM) probability density functions in recursive Bayesian peer-to-peer decentralized data fusion (DDF). It is shown that algorithms for both exact and approximate GM DDF lead to the same problem of finding a suitable GM approximation to a posterior fusion pdf resulting from the division of a `naive Bayes fusion GM (representing direct combination of possibly dependent information sources) by another non-Gaussian pdf (representing removal of either the actual or estimated `common information between the information sources). The resulting quotient pdf for general GM fusion is naturally a mixture pdf, although the fused mixands are non-Gaussian and are not analytically tractable for recursive Bayesian updates. Parallelizable importance sampling algorithms for both direct local approximation and indirect global approximation of the quotient mixture are developed to find tractable GM approximations to the non-Gaussian `sum of quotients mixtures. Practical application examples for multi-platform static target search and maneuverable range-based target tracking demonstrate the higher fidelity of the resulting approximations compared to existing GM DDF techniques, as well as their favorable computational features.



rate research

Read More

We consider estimating the parameters of a Gaussian mixture density with a given number of components best representing a given set of weighted samples. We adopt a density interpretation of the samples by viewing them as a discrete Dirac mixture density over a continuous domain with weighted components. Hence, Gaussian mixture fitting is viewed as density re-approximation. In order to speed up computation, an expectation-maximization method is proposed that properly considers not only the sample locations, but also the corresponding weights. It is shown that methods from literature do not treat the weights correctly, resulting in wrong estimates. This is demonstrated with simple counterexamples. The proposed method works in any number of dimensions with the same computational load as standard Gaussian mixture estimators for unweighted samples.
Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.
Many problems in robotics involve multiple decision making agents. To operate efficiently in such settings, a robot must reason about the impact of its decisions on the behavior of other agents. Differential games offer an expressive theoretical framework for formulating these types of multi-agent problems. Unfortunately, most numerical solution techniques scale poorly with state dimension and are rarely used in real-time applications. For this reason, it is common to predict the future decisions of other agents and solve the resulting decoupled, i.e., single-agent, optimal control problem. This decoupling neglects the underlying interactive nature of the problem; however, efficient solution techniques do exist for broad classes of optimal control problems. We take inspiration from one such technique, the iterative linear-quadratic regulator (ILQR), which solves repeated approximations with linear dynamics and quadratic costs. Similarly, our proposed algorithm solves repeated linear-quadratic games. We experimentally benchmark our algorithm in several examples with a variety of initial conditions and show that the resulting strategies exhibit complex interactive behavior. Our results indicate that our algorithm converges reliably and runs in real-time. In a three-player, 14-state simulated intersection problem, our algorithm initially converges in < 0.25s. Receding horizon invocations converge in < 50 ms in a hardware collision-avoidance test.
Multi-Agent Reinforcement Learning (MARL) algorithms show amazing performance in simulation in recent years, but placing MARL in real-world applications may suffer safety problems. MARL with centralized shields was proposed and verified in safety games recently. However, centralized shielding approaches can be infeasible in several real-world multi-agent applications that involve non-cooperative agents or communication delay. Thus, we propose to combine MARL with decentralized Control Barrier Function (CBF) shields based on available local information. We establish a safe MARL framework with decentralized multiple CBFs and develop Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to Multi-Agent Deep Deterministic Policy Gradient with decentralized multiple Control Barrier Functions (MADDPG-CBF). Based on a collision-avoidance problem that includes not only cooperative agents but obstacles, we demonstrate the construction of multiple CBFs with safety guarantees in theory. Experiments are conducted and experiment results verify that the proposed safe MARL framework can guarantee the safety of agents included in MARL.
In this paper, we characterize the performance of and develop thermal management solutions for a DC motor-driven resonant actuator developed for flapping wing micro air vehicles. The actuator, a DC micro-gearmotor connected in parallel with a torsional spring, drives reciprocal wing motion. Compared to the gearmotor alone, this design increased torque and power density by 161.1% and 666.8%, respectively, while decreasing the drawn current by 25.8%. Characterization of the actuator, isolated from nonlinear aerodynamic loading, results in standard metrics directly comparable to other actuators. The micro-motor, selected for low weight considerations, operates at high power for limited duration due to thermal effects. To predict system performance, a lumped parameter thermal circuit model was developed. Critical model parameters for this micro-motor, two orders of magnitude smaller than those previously characterized, were identified experimentally. This included the effects of variable winding resistance, bushing friction, speed-dependent forced convection, and the addition of a heatsink. The model was then used to determine a safe operation envelope for the vehicle and to design a weight-optimal heatsink. This actuator design and thermal modeling approach could be applied more generally to improve the performance of any miniature mobile robot or device with motor-driven oscillating limbs or loads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا