Do you want to publish a course? Click here

Consolidation of freshly deposited cohesive and non-cohesive sediment: particle-resolved simulations

85   0   0.0 ( 0 )
 Added by Bernhard Vowinckel
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the consolidation of freshly deposited cohesive and non-cohesive sediment by means of particle-resolved direct Navier-Stokes simulations based on the Immersed Boundary Method. The computational model is parameterized by material properties and does not involve any arbitrary calibrations. We obtain the stress balance of the fluid-particle mixture from first principles and link it to the classical effective stress concept. The detailed datasets obtained from our simulations allow us to evaluate all terms of the derived stress balance. We compare the settling of cohesive sediment to its non-cohesive counterpart, which corresponds to the settling of the individual primary particles. The simulation results yield a complete parameterization of the Gibson equation, which has been the method of choice to analyze self-weight consolidation.



rate research

Read More

We develop a physical and computational model for performing fully coupled, particle-resolved Direct Numerical Simulations of cohesive sediment, based on the Immersed Boundary Method. The model distributes the cohesive forces over a thin shell surrounding each particle, thereby allowing for the spatial and temporal resolution of the cohesive forces during particle-particle interactions. The influence of the cohesive forces is captured by a single dimensionless parameter in the form of a cohesion number, which represents the ratio of cohesive and gravitational forces acting on a particle. We test and validate the cohesive force model for binary particle interactions in the Drafting-Kissing-Tumbling (DKT) configuration. The DKT simulations demonstrate that cohesive particle pairs settle in a preferred orientation, with particles of very different sizes preferentially aligning themselves in the vertical direction, so that the smaller particle is drafted in the wake of the larger one. To test this mechanism in a system of higher complexity, we perform large simulations of 1,261 polydisperse settling particles starting from rest. These simulations reproduce several earlier experimental observations by other authors, such as the accelerated settling of sand and silt particles due to particle bonding. The simulations demonstrate that cohesive forces accelerate the overall settling process primarily because smaller grains attach to larger ones and settle in their wakes. For the present cohesion number values, we observe that settling can be accelerated by up to 29%. We propose physically based parametrization of classical hindered settling functions proposed by earlier authors, in order to account for cohesive forces. An investigation of the energy budget shows that the work of the collision forces can substantially modify the relevant energy conversion processes.
89 - M. Morgeneyer 2005
A novel method to investigate the compaction behaviour of cohesive powders is presented. As a sample, a highly porous agglomerate formed by random ballistic deposition (RBD) of micron sized spherical particles is used. A nanomanipulator deforms this small structure under scanning electron microscope observation, allowing for the tracking of individual particle motion. Defined forces are applied and the resulting deformations are measured. The hereby obtained results are compared to results from threedimensional discrete element simulations as well as macroscopic compaction experiments. Relevant simulation parameters are determined by colloidal probe measurements.
We report numerical results of effective attractive forces on the packing properties of two-dimensional elongated grains. In deposits of non-cohesive rods in 2D, the topology of the packing is mainly dominated by the formation of ordered structures of aligned rods. Elongated particles tend to align horizontally and the stress is mainly transmitted from top to bottom, revealing an asymmetric distribution of local stress. However, for deposits of cohesive particles, the preferred horizontal orientation disappears. Very elongated particles with strong attractive forces form extremely loose structures, characterized by an orientation distribution, which tends to a uniform behavior when increasing the Bond number. As a result of these changes, the pressure distribution in the deposits changes qualitatively. The isotropic part of the local stress is notably enhanced with respect to the deviatoric part, which is related to the gravity direction. Consequently, the lateral stress transmission is dominated by the enhanced disorder and leads to a faster pressure saturation with depth.
Mobile microrobots are envisioned to be useful in a wide range of high-impact applications, many of which requiring cohesive group formation to maintain self-bounded swarms in the absence of confining boundaries. Cohesive group formation relies on a balance between attractive and repulsive interactions between agents. We found that a balance of magnetic dipolar attraction and multipolar repulsion between self-assembled particle chain microrobots enable their self-organization into cohesive clusters. Self-organized microrobotic clusters translate above a solid substrate via a hydrodynamic self-propulsion mechanism. Cluster velocity increases with cluster size, resulting from collective hydrodynamic effects. Clustering is promoted by the strength of cohesive interactions and hindered by heterogeneities of individual microrobots. Scalability of cohesive interactions allows formation of larger groups, whose internal spatiotemporal organization undergoes a transition from solid-like ordering to liquid-like behavior with increasing cluster size. Our work elucidates the dynamics of clustering under cohesive interactions, and presents an approach for addressing operation of microrobots as localized teams.
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا