We study the effects of Janus oscillators in a system of phase oscillators in which the coupling constants take both positive and negative values. Janus oscillators may also form a cluster when the other ones are ordered and we calculate numerically the traveling speed of three clusters emerging in the system and average separations between them as well as the order parameters for three groups of oscillators, as the coupling constants and the fractions of positive and Janus oscillators are varied. An expression explaining the dependence of the traveling speed on these parameters is obtained and observed to fit well the numerical data. With the help of this, we describe how Janus oscillators affect the traveling of the clusters in the system.
We investigate numerically the dynamics of traveling clusters in systems of phase oscillators, some of which possess positive couplings and others negative couplings. The phase distribution, speed of traveling, and average separation between clusters as well as order parameters for positive and negative oscillators are computed, as the ratio of the two coupling constants and/or the fraction of positive oscillators are varied. The traveling speed depending on these parameters is obtained and observed to fit well with the numerical data of the systems. With the help of this, we describe the conditions for the traveling state to appear in the systems with or without periodic driving.
We investigate numerically the clustering behavior of a system of phase oscillators with positive and negative couplings under a periodic external driving field with a bimodal distribution of driving phases. The phase distribution and the mean speed of the traveling state, as well as the order parameter for synchronization, are computed as the driving amplitude is varied. We observe that the periodically-driven system can also host traveling states for parameters in the same range as those for the case of a system without a driving field. The traveling speed is found to depend non-monotonically on the driving amplitude. In particular, oscillators divide into four clusters and move in pairs. Further, depending on the driving amplitude, two kinds of traveling mode arise: pairs of clusters traveling in the same direction (symmetric mode) and in opposite directions (antisymmetric mode). In the latter case (antisymmetric traveling mode), the average phase speed of the whole system apparently vanishes. A phenomenological argument for such behavior is given.
In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on a very rich phase diagram in presence of thermal noise and an additional non-local interaction on a one-dimensional periodic lattice. Remarkably, the phase diagram involves both equilibrium and non-equilibrium phase transitions. In two contrasting limits of the dynamics, we obtain exact analytical results for the phase transitions. These two limits correspond to (i) the absence of thermal noise, when the dynamics reduces to that of a non-linear dynamical system, and (ii) the oscillators having the same natural frequency, when the dynamics becomes that of a statistical system in contact with a heat bath and relaxing to a statistical equilibrium state. In the former case, our exact analysis is based on the use of the so-called Ott-Antonsen ansatz to derive a reduced set of nonlinear partial differential equations for the macroscopic evolution of the system. Our results for the case of statistical equilibrium are on the other hand obtained by extending the well-known transfer matrix approach for nearest-neighbor Ising model to consider non-local interactions. The work offers a case study of exact analysis in many-body interacting systems. The results obtained underline the crucial role of additional non-local interactions in either destroying or enhancing the possibility of observing synchrony in mean-field systems exhibiting spontaneous synchronization.
We consider the inertial Kuramoto model of $N$ globally coupled oscillators characterized by both their phase and angular velocity, in which there is a time delay in the interaction between the oscillators. Besides the academic interest, we show that the model can be related to a network of phase-locked loops widely used in electronic circuits for generating a stable frequency at multiples of an input frequency. We study the model for a generic choice of the natural frequency distribution of the oscillators, to elucidate how a synchronized phase bifurcates from an incoherent phase as the coupling constant between the oscillators is tuned. We show that in contrast to the case with no delay, here the system in the stationary state may exhibit either a subcritical or a supercritical bifurcation between a synchronized and an incoherent phase, which is dictated by the value of the delay present in the interaction and the precise value of inertia of the oscillators. Our theoretical analysis, performed in the limit $N to infty$, is based on an unstable manifold expansion in the vicinity of the bifurcation, which we apply to the kinetic equation satisfied by the single-oscillator distribution function. We check our results by performing direct numerical integration of the dynamics for large $N$, and highlight the subtleties arising from having a finite number of oscillators.
Many coordination phenomena are based on a synchronisation process, whose global behaviour emerges from the interactions among the individual parts. Often in Nature, such self-organising mechanism allows the system to behave as a whole and thus grounding its very first existence, or expected functioning, on such process. There are however cases where synchronisation acts against the stability of the system; for instance in the case of engineered structures, resonances among sub parts can destabilise the whole system. In this Letter we propose an innovative control method to tackle the synchronisation process based on the use of the Hamiltonian control theory, by adding a small control term to the system we are able to impede the onset of the synchronisation. We present our results on the paradigmatic Kuramoto model but the applicability domain is far more large.
Jungzae Choi
,MooYoung Choi
,Byung-Gook Yoon
.
(2019)
.
"Effects of Janus Oscillators in the Kuramoto Model with Positive and Negative Couplings"
.
Byung-Gook Yoon
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا