Do you want to publish a course? Click here

Small data global well-posedness for a Boltzmann equation via bilinear spacetime estimates

94   0   0.0 ( 0 )
 Added by Thomas Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a new analysis of the Boltzmann equation with constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is $L^2_{x,v}$; we prove global well-posedness and a version of scattering, assuming that the data $f_0$ is sufficiently smooth and localized, and the $L^2_{x,v}$ norm of $f_0$ is sufficiently small. The proof relies upon a new scaling-critical bilinear spacetime estimate for the collision gain term in Boltzmanns equation, combined with a novel application of the Kaniel-Shinbrot iteration.



rate research

Read More

In this paper we show global well-posedness near vacuum for the binary-ternary Boltzmann equation. The binary-ternary Boltzmann equation provides a correction term to the classical Boltzmann equation, taking into account both binary and ternary interactions of particles, and may serve as a more accurate description model for denser gases in non-equilibrium. Well-posedness of the classical Boltzmann equation and, independently, the purely ternary Boltzmann equation follow as special cases. To prove global well-posedness, we use a Kaniel-Shinbrot iteration and related work to approximate the solution of the nonlinear equation by monotone sequences of supersolutions and subsolutions. This analysis required establishing new convolution type estimates to control the contribution of the ternary collisional operator to the model. We show that the ternary operator allows consideration of softer potentials than the one binary operator, consequently our solution to the ternary correction of the Boltzmann equation preserves all the properties of the binary interactions solution. These results are novel for collisional operators of monoatomic gases with either hard or soft potentials that model both binary and ternary interactions.
351 - Tristan Roy 2017
We prove global well-posedness for the $3D$ radial defocusing cubic wave equation with data in $H^{s} times H^{s-1}$, $1>s>{7/10}$.
272 - Zihua Guo , Baoxiang Wang 2008
Considering the Cauchy problem for the modified finite-depth-fluid equation $partial_tu-G_delta(partial_x^2u)mp u^2u_x=0, u(0)=u_0$, where $G_delta f=-i ft ^{-1}[coth(2pi delta xi)-frac{1}{2pi delta xi}]ft f$, $deltages 1$, and $u$ is a real-valued function, we show that it is uniformly globally well-posed if $u_0 in H^s (sgeq 1/2)$ with $ orm{u_0}_{L^2}$ sufficiently small for all $delta ges 1$. Our result is sharp in the sense that the solution map fails to be $C^3$ in $H^s (s<1/2)$. Moreover, we prove that for any $T>0$, its solution converges in $C([0,T]; H^s)$ to that of the modified Benjamin-Ono equation if $delta$ tends to $+infty$.
We establish probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation relative to the Coulomb gauge for scaling super-critical random initial data. The proof relies on an induction on frequency procedure and a modified linear-nonlinear decomposition furnished by a delicate probabilistic parametrix construction. This is the first global existence result for a geometric wave equation for random initial data at scaling super-critical regularity.
We use the dispersive properties of the linear Schr{o}dinger equation to prove local well-posedness results for the Boltzmann equation and the related Boltzmann hierarchy, set in the spatial domain $mathbb{R}^d$ for $dgeq 2$. The proofs are based on the use of the (inverse) Wigner transform along with the spacetime Fourier transform. The norms for the initial data $f_0$ are weight
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا