We study the loop-induced circularly polarized gamma rays from dark matter annihilation using the effective dark matter theory approach. Both neutral scalar and fermionic dark matter annihilating into monochromatic diphoton and $Z$-photon final states are considered. To generate the circular polarization asymmetry, $P$ and $CP$ symmetries must be violated in the couplings between dark matter and Standard Model fermions inside the loop with non-vanishing Cutkosky cut. The asymmetry can be sizable especially for $Z$-photon final state for which asymmetry of nearly $90%$ can be reached. We discuss the prospect for detecting the circular polarization asymmetry of the gamma-ray flux from dark matter annihilation in the Galactic Center in future gamma-ray polarimetry experiments.
In this paper, we explore the possibility of a linearly polarized gamma-ray signal from dark matter annihilations in the Galactic center. Considering neutral weakly interacting massive particles, a polarized gamma-ray signal can be realized by a two-component dark matter model of Majorana fermions with an anapole moment. We discuss the spin alignment of such dark matter fermions in the Galactic center and then estimate the intensity and the polarizability of the final-state electromagnetic radiation in the dark matter annihilations. For low-mass dark matter, the photon flux at sub-GeV energies may be polarized at a level detectable in current X-ray polarimeters. Depending on the mass ratio between the final-state fermion and DM, the degree of polarization at the mass threshold can reach $70%$ or even higher, providing us with a new tool for probing the nature of dark matter in future gamma-ray polarization experiments.
The annihilation cross section of TeV scale dark matter particles $chi^0$ with electroweak charges into photons is affected by large quantum corrections due to Sudakov logarithms and the Sommerfeld effect. We calculate the semi-inclusive photon energy spectrum in $chi^0chi^0to gamma+X$ in the vicinity of the maximal photon energy $E_gamma = m_chi$ with NLL accuracy in an all-order summation of the electroweak perturbative expansion adopting the pure wino model. This results in the most precise theoretical prediction of the annihilation rate for $gamma$-ray telescopes with photon energy resolution of parametric order $m_W^2/m_chi$ for photons with TeV energies.
Les Houches 2021 lectures on dark matter effective field theory (short course). The aim of these two lectures is to calculate the DM-nucleus cross section for a simple example, and then generalize to the treatment of general effective interactions of spin-1/2 DM. Relativistic local operators, the heavy-DM effective theory, the chiral effective Lagrangian, and nuclear effective operators are briefly discussed.
Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered smoking gun evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter space of great interest in the context of dark matter which is a thermal relic. We consider theories in which the dark matters primary connection to the Standard Model is via the top quark, realizing strong gamma ray lines consistent with a thermal relic through the forbidden channel mechanism proposed in the Higgs in Space Model. We consider realistic UV-completions of the Higgs in Space and related theories, and show that a rich structure of observable gamma ray lines is consistent with a thermal relic as well as constraints from dark matter searches and the LHC. Particular attention is paid to the one loop contributions to the continuum gamma rays, which can easily swamp the line signals in some cases, and have been largely overlooked in previous literature.
We consider self-annihilation of dark matter, $chi$, into metastable mediators, $Y$, and their subsequent decay into photons inside white dwarfs. We focus on reactions of the type $chi bar{chi}rightarrow YY$, where mediators, besides having a finite decay lifetime at rest $tau_{rm rest}lesssim 1$ s, may suffer energy loss in the medium before they decay into photons, $Y rightarrow gammagamma$. We obtain attenuated gamma-ray luminosities arising from the combination of both effects. Using complementary sets of astrophysical measurements from cold white dwarfs in the M4 globular cluster as well as direct/indirect dark matter searches we discuss further constraints on dark mediator lifetimes.