No Arabic abstract
Feature construction can substantially improve the accuracy of Machine Learning (ML) algorithms. Genetic Programming (GP) has been proven to be effective at this task by evolving non-linear combinations of input features. GP additionally has the potential to improve ML explainability since explicit expressions are evolved. Yet, in most GP works the complexity of evolved features is not explicitly bound or minimized though this is arguably key for explainability. In this article, we assess to what extent GP still performs favorably at feature construction when constructing features that are (1) Of small-enough number, to enable visualization of the behavior of the ML model; (2) Of small-enough size, to enable interpretability of the features themselves; (3) Of sufficient informative power, to retain or even improve the performance of the ML algorithm. We consider a simple feature construction scheme using three different GP algorithms, as well as random search, to evolve features for five ML algorithms, including support vector machines and random forest. Our results on 21 datasets pertaining to classification and regression problems show that constructing only two compact features can be sufficient to rival the use of the entire original feature set. We further find that a modern GP algorithm, GP-GOMEA, performs best overall. These results, combined with examples that we provide of readable constructed features and of 2D visualizations of ML behavior, lead us to positively conclude that GP-based feature construction still works well when explicitly searching for compact features, making it extremely helpful to explain ML models.
In this paper, we present a new explainability formalism designed to explain how each input variable of a test set impacts the predictions of machine learning models. Hence, we propose a group explainability formalism for trained machine learning decision rules, based on their response to the variability of the input variables distribution. In order to emphasize the impact of each input variable, this formalism uses an information theory framework that quantifies the influence of all input-output observations based on entropic projections. This is thus the first unified and model agnostic formalism enabling data scientists to interpret the dependence between the input variables, their impact on the prediction errors, and their influence on the output predictions. Convergence rates of the entropic projections are provided in the large sample case. Most importantly, we prove that computing an explanation in our framework has a low algorithmic complexity, making it scalable to real-life large datasets. We illustrate our strategy by explaining complex decision rules learned by using XGBoost, Random Forest or Deep Neural Network classifiers on various datasets such as Adult income, MNIST and CelebA. We finally make clear its differences with the explainability strategies textit{LIME} and textit{SHAP}, that are based on single observations. Results can be reproduced by using the freely distributed Python toolbox https://gems-ai.com}.
We introduce an all-optical Diffractive Deep Neural Network (D2NN) architecture that can learn to implement various functions after deep learning-based design of passive diffractive layers that work collectively. We experimentally demonstrated the success of this framework by creating 3D-printed D2NNs that learned to implement handwritten digit classification and the function of an imaging lens at terahertz spectrum. With the existing plethora of 3D-printing and other lithographic fabrication methods as well as spatial-light-modulators, this all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can implement, and will find applications in all-optical image analysis, feature detection and object classification, also enabling new camera designs and optical components that can learn to perform unique tasks using D2NNs.
Kernel methods augmented with random features give scalable algorithms for learning from big data. But it has been computationally hard to sample random features according to a probability distribution that is optimized for the data, so as to minimize the required number of features for achieving the learning to a desired accuracy. Here, we develop a quantum algorithm for sampling from this optimized distribution over features, in runtime $O(D)$ that is linear in the dimension $D$ of the input data. Our algorithm achieves an exponential speedup in $D$ compared to any known classical algorithm for this sampling task. In contrast to existing quantum machine learning algorithms, our algorithm circumvents sparsity and low-rank assumptions and thus has wide applicability. We also show that the sampled features can be combined with regression by stochastic gradient descent to achieve the learning without canceling out our exponential speedup. Our algorithm based on sampling optimized random features leads to an accelerated framework for machine learning that takes advantage of quantum computers.
As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graph-based architecture is employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design.
When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on an optimistic proxy of future performance, the best latent marginal. We interpret auto-encoders in this setting as generative models, by showing that they train a lower bound of this criterion. We test the new learning procedure against a state of the art method (stacked RBMs), and find it to improve performance. Both theory and experiments highlight the importance, when training deep architectures, of using an inference model (from data to hidden variables) richer than the generative model (from hidden variables to data).