No Arabic abstract
We calculate the bag parameters for neutral $B$-meson mixing in and beyond the Standard Model, in full four-flavour lattice QCD for the first time. We work on gluon field configurations that include the effect of $u$, $d$, $s$ and $c$ sea quarks with the Highly Improved Staggered Quark (HISQ) action at three values of the lattice spacing and with three $u/d$ quark masses going down to the physical value. The valence $b$ quarks use the improved NRQCD action and the valence light quarks, the HISQ action. Our analysis was blinded. Our results for the bag parameters for all five operators are the most accurate to date. For the Standard Model operator between $B_s$ and $B_d$ mesons we find: $hat{B}_{B_s}=1.232(53)$, $hat{B}_{B_d}=1.222(61)$. Combining our results with lattice QCD calculations of the decay constants using HISQ quarks from the Fermilab/MILC collaboration and with experimental values for $B_s$ and $B_d$ oscillation frequencies allows determination of the CKM elements $V_{ts}$ and $V_{td}$. We find $V_{ts} = 0.04189(93)$, $V_{td} = 0.00867(23)$ and $V_{ts}/V_{td} = 0.2071(27)$. Our results agree well (within $2sigma$) with values determined from CKM unitarity constraints based on tree-level processes (only). Using a ratio to $Delta M$ in which CKM elements cancel in the Standard Model, we determine the branching fractions ${text{Br}}(B_srightarrow mu^+mu^-) = 3.81(18) times 10^{-9}$ and ${text{Br}}(B_drightarrow mu^+mu^-) = 1.031(54) times 10^{-10}$. We also give results for matrix elements of the operators $R_0$, $R_1$ and $tilde{R}_1$ that contribute to neutral $B$-meson width differences.
We study $B_d$ and $B_s$ mixing in unquenched lattice QCD employing the MILC collaboration gauge configurations that include u, d, and s sea quarks based on the improved staggered quark (AsqTad) action and a highly improved gluon action. We implement the valence light quarks also with the AsqTad action and use the nonrelativistic NRQCD action for the valence b quark. We calculate hadronic matrix elements necessary for extracting CKM matrix elements from experimental measurements of mass differences $Delta M_d$ and $Delta M_s$. We find $xi = f_{B_s} sqrt{hat{B}_{B_s}} / f_{B_d} sqrt{hat{B}_{B_d}} = 1.258(33)$, $f_{B_d} sqrt{hat{B}_{B_d}} = 216(15)$ MeV and $f_{B_s} sqrt{hat{B}_{B_s}} = 266(18)$ MeV. We also update previous results for decay constants and obtain $f_{B_d} = 190(13)$ MeV, $f_{B_s} = 231(15)$ MeV and $f_{B_s}/f_{B_d} = 1.226(26)$. The new lattice results lead to updated values for the ratio of CKM matrix elements $|V_{td}|/|V_{ts}|$ and for the Standard Model prediction for $Br(B_s rightarrow mu^+ mu^-)$ with reduced errors. We determine $|V_{td}|/|V_{ts}| = 0.214(1)(5)$ and $Br(B_s rightarrow mu^+ mu^-) = 3.19(19) times 10^{-9}$.
We present the first lattice QCD calculation of the $B_s$ and $B_d$ mixing parameters with physical light quark masses. We use MILC gluon field configurations that include $u$, $d$, $s$ and $c$ sea quarks at 3 values of the lattice spacing and with 3 values of the $u/d$ quark mass going down to the physical value. We use improved NRQCD for the valence $b$ quarks. Preliminary results show significant improvements over earlier values.
We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the matrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis.
We extend the picture of $B$-meson decay constants obtained in lattice QCD beyond those of the $B$, $B_s$ and $B_c$ to give the first full lattice QCD results for the $B^*$, $B^*_s$ and $B^*_c$. We use improved NonRelativistic QCD for the valence $b$ quark and the Highly Improved Staggered Quark (HISQ) action for the lighter quarks on gluon field configurations that include the effect of $u/d$, $s$ and $c$ quarks in the sea with $u/d$ quark masses going down to physical values. For the ratio of vector to pseudoscalar decay constants, we find $f_{B^*}/f_B$ = 0.941(26), $f_{B^*_s}/f_{B_s}$ = 0.953(23) (both $2sigma$ less than 1.0) and $f_{B^*_c}/f_{B_c}$ = 0.988(27). Taking correlated uncertainties into account we see clear indications that the ratio increases as the mass of the lighter quark increases. We compare our results to those using the HISQ formalism for all quarks and find good agreement both on decay constant values when the heaviest quark is a $b$ and on the dependence on the mass of the heaviest quark in the region of the $b$. Finally, we give an overview plot of decay constants for gold-plated mesons, the most complete picture of these hadronic parameters to date.
We present an update of the Fermilab-MILC Collaborations calculation of hadronic matrix elements for B^0-bar{B^0} mixing. This work is a more extended analysis than our recent publication of the SU(3)-breaking ratio xi [arXiv:1205.7013]. We use the asqtad staggered action for light valence quarks in combination with the Fermilab interpretation of the Sheikoleslami-Wohlert action for heavy quarks. The calculations use MILCs 2+1 flavor asqtad ensembles. Ensembles include four lattice spacings from approximately 0.125 fm to 0.045 fm and up/down to strange quark mass ratios as low as 0.05. Our calculation covers the complete set of five operators needed to describe B mixing in the Standard Model and beyond. In addition to an update including a fuller set of analyzed data, we comment on the form of the staggered ChPT extrapolation function.