Do you want to publish a course? Click here

Chemical potential of an antiferromagnetic magnon gas

205   0   0.0 ( 0 )
 Added by Benedetta Flebus
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the statistics of quasi-particle excitations in magnetic systems is essential for exploring new magnetic phases and collective quantum phenomena. While the chemical potential of a ferromagnetic gas has been extensively investigated both theoretically and experimentally, its antiferromagnetic counterpart remains uncharted. Here, we derive the statistics of a two-component U(1)-symmetric Bose gas and apply our results to an axially-symmetric antiferromagnetic insulator. We find that the two magnon eigenmodes of the system are described by an equal and opposite chemical potential, in analogy with a particle-antiparticle pair. Furthermore, we derive the thermomagnonic torques describing the interaction between the coherent and incoherent antiferromagnetic spin dynamics. Our results show that the magnitude and sign of the chemical potential can be tuned via an AC magnetic field driving resonantly one of the magnon modes. Finally, we propose NV-center relaxometry as a method to experimentally test our predictions.



rate research

Read More

We show experimentally that the spin current generated by the spin Hall effect drives the magnon gas in a ferromagnet into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.
We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation lengths. Proceeding from a linearized Boltzmann equation, we derive expressions for length scales and transport coefficients. For yttrium iron garnet (YIG) at room temperature we find that long-range transport is dominated by the magnon chemical potential. We compare the models results with recent experiments on YIG with Pt contacts [L.J. Cornelissen, et al., Nat. Phys. 11, 1022 (2015)] and extract a magnon spin conductivity of $sigma_{m}=5times10^{5}$ S/m. Our results for the spin Seebeck coefficient in YIG agree with published experiments. We conclude that the magnon chemical potential is an essential ingredient for energy and spin transport in magnetic insulators.
We introduce the magnon circular photogalvanic effect enabled by stimulated Raman scattering. This provides an all-optical pathway to the generation of directed magnon currents with circularly polarized light in honeycomb antiferromagnetic insulators. The effect is the leading order contribution to magnon photocurrent generation via optical fields. Control of the magnon current by the polarization and angle of incidence of the laser is demonstrated. Experimental detection by sizeable inverse spin Hall voltages in platinum contacts is proposed.
A magnon Nernst effect, an antiferromagnetic analogue of the magnon Hall effect in ferromagnetic insulators, has been studied experimentally for a layered antiferromagnetic insulator MnPS3 in contact with two Pt strips. Thermoelectric voltage in the Pt strips grown on MnPS3 single crystals exhibits non-monotonic temperature dependence at low temperatures, which cannot be explained by electronic origins in Pt but can be ascribed to the inverse spin Hall voltage induced by a magnon Nernst effect. Control of antiferromagnetic domains in the MnPS3 crystal by magnetoelectric cooling is found to modulate the low-temperature thermoelectric voltage in Pt, which corroborates the emergence of the magnon Nernst effect in Pt|MnPS3 hybrid structures.
The interlayer coupling mediated by fermions in ferromagnets brings about parallel and anti-parallel magnetization orientations of two magnetic layers, resulting in the giant magnetoresistance, which forms the foundation in spintronics and accelerates the development of information technology. However, the interlayer coupling mediated by another kind of quasi-particle, boson, is still lacking. Here we demonstrate such a static interlayer coupling at room temperature in an antiferromagnetic junction Fe2O3/Cr2O3/Fe2O3, where the two antiferromagnetic Fe2O3 layers are functional materials and the antiferromagnetic Cr2O3 layer serves as a spacer. The Neel vectors in the top and bottom Fe2O3 are strongly orthogonally coupled, which is bridged by a typical bosonic excitation (magnon) in the Cr2O3 spacer. Such an orthogonally coupling exceeds the category of traditional collinear interlayer coupling via fermions in ground state, reflecting the fluctuating nature of the magnons, as supported by our magnon quantum well model. Besides the fundamental significance on the quasi-particle-mediated interaction, the strong coupling in an antiferromagnetic magnon junction makes it a realistic candidate for practical antiferromagnetic spintronics and magnonics with ultrahigh-density integration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا