Logarithmic growth of local entropy and total correlations in many-body localized dynamics


Abstract in English

The characterizing feature of a many-body localized phase is the existence of an extensive set of quasi-local conserved quantities with an exponentially localized support. This structure endows the system with the signature logarithmic in time entanglement growth between spatial partitions. This feature differentiates the phase from Anderson localization, in a non-interacting model. Experimentally measuring the entanglement between large partitions of an interacting many-body system requires highly non-local measurements which are currently beyond the reach of experimental technology. In this work we demonstrate that the defining structure of many-body localization can be detected by the dynamics of a simple quantity from quantum information known as the total correlations which is connected to the local entropies. Central to our finding is the necessity to propagate specific initial states, drawn from the Hamiltonian unbiased basis (HUB). The dynamics of the local entropies and total correlations requires only local measurements in space and therefore is potentially experimentally accessible in a range of platforms.

Download