In order to study stellar populations and galaxy structures at intermediate and high redshift (z=0.2-2.0) and link these properties to those of low redshift galaxies, there is a need for well-defined local reference samples. Especially for galaxies in massive clusters, such samples are often limited to the Coma cluster galaxies. We present consistently calibrated velocity dispersions and absorption line indices for galaxies in the central 2 R500 x 2 R500 of four massive clusters at z<0.1: Abell 426/Perseus, Abell 1656/Coma, Abell 2029, and Abell 2142. The measurements are based on data from Gemini Observatory, McDonald Observatory, and the Sloan Digital Sky Survey. For bulge-dominated galaxies the samples are 95 percent complete in Perseus and Coma, and 74 percent complete in A2029 and A2142, to a limit of M_Babs <= -18.5 mag. The data serve as the local reference for our studies of galaxy populations in the higher redshift clusters that are part of the Gemini/HST Galaxy Cluster Project (GCP). We establish the scaling relations between line indices and velocity dispersions as reference for the GCP. We derive stellar population parameters ages, metallicities [M/H], and abundance ratios from line indices, both averaged in bins of velocity dispersion, and from individual measurements for galaxies in Perseus and Coma. The zero points of relations between the stellar population parameters and the velocity dispersions limit the allowed cluster-to-cluster variation of the four clusters to +-0.08 dex in age, +-0.06 dex in [M/H], +-0.07 dex in [CN/Fe], and +-0.03 dex in [Mg/Fe].
RXJ0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. Our analysis of stellar populations and star formation history in the cluster covers 24 members and is based on deep optical spectroscopy from Gemini North and imaging data from HST. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. The galaxies in RXJ0848.6+4453 populate the Fundamental Plane similar to that found for lower redshift clusters with a zero point offset corresponding to an epoch of last star formation at z_form= 1.95+-0.2. The spectra of the galaxies in RXJ0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low level on-going star formation. The average age of the young stellar populations (estimated from H-zeta) is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z_form=1.95. Galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low level star formation has not yet been fully quenched in the center of this cluster may be because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little on-going star formation in their centers.
Stellar populations in barred galaxies save an imprint of the influence of the bar on the host galaxys evolution. We present a detailed analysis of star formation histories (SFHs) and chemical enrichment of stellar populations in nine nearby barred galaxies from the TIMER project. We use integral field observations with the MUSE instrument to derive unprecedented spatially resolved maps of stellar ages, metallicities, [Mg/Fe] abundances and SFHs, as well as H$alpha$ as a tracer of ongoing star formation. We find a characteristic V-shaped signature in the SFH perpendicular to the bar major axis which supports the scenario where intermediate age stars ($sim 2$-$6 mathrm{Gyr}$) are trapped on more elongated orbits shaping a thinner part of the bar, while older stars ($> 8 mathrm{Gyr}$) are trapped on less elongated orbits shaping a rounder and thicker part of the bar. We compare our data to state-of-the-art cosmological magneto-hydrodynamical simulations of barred galaxies and show that such V-shaped SFHs arise naturally due to the dynamical influence of the bar on stellar populations with different ages and kinematic properties. Additionally, we find an excess of very young stars ($< 2 mathrm{Gyr}$) on the edges of the bars, predominantly on the leading side, confirming typical star formation patterns in bars. Furthermore, mass-weighted age and metallicity gradients are slightly shallower along the bar than in the disc likely due to orbital mixing in the bar. Finally, we find that bars are mostly more metal-rich and less [Mg/Fe]-enhanced than the surrounding discs. We interpret this as a signature that the bar quenches star formation in the inner region of discs, usually referred to as star formation deserts. We discuss these results and their implications on two different scenarios of bar formation and evolution.
We study the effects of galaxy environment on the evolution of the stellar-mass function (SMF) over 0.2 < z < 2.0 using the FourStar Galaxy Evolution (ZFOURGE) survey and NEWFIRM Medium-Band Survey (NMBS) down to the stellar-mass completeness limit, log M / Msun > 9.0 (9.5) at z = 1.0 (2.0). We compare the SMFs for quiescent and star-forming galaxies in the highest and lowest environments using a density estimator based on the distance to the galaxies third-nearest neighbors. For star-forming galaxies, at all redshifts there are only minor differences with environment in the shape of the SMF. For quiescent galaxies, the SMF in the lowest densities shows no evolution with redshift, other than an overall increase in number density (phi*) with time. This suggests that the stellar-mass dependence of quenching in relatively isolated galaxies is both universal and does not evolve strongly. While at z >~ 1.5 the SMF of quiescent galaxies is indistinguishable in the highest and lowest densities, at lower redshifts it shows a rapidly increasing number density of lower-mass galaxies, log M / Msun ~= 9-10. We argue this evolution can account for all the redshift evolution in the shape of the total quiescent-galaxy SMF. This evolution in the quiescent-galaxy SMF at higher redshift (z > 1) requires an environmental-quenching efficiency that decreases with decreasing stellar mass at 0.5 < z < 1.5 or it would overproduce the number of lower-mass quiescent galaxies in denser environments. This requires a dominant environment process such as starvation combined with rapid gas depletion and ejection at z > 0.5 - 1.0 for galaxies in our mass range. The efficiency of this process decreases with redshift allowing other processes (such as galaxy interactions and ram-pressure stripping) to become more important at later times, z < 0.5.
We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-HST/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multi wavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than $JH_{140} < 24$ mag in the redshift range $0.5<z<3.0$. By linking observed galaxies to a mock sample, selected to reproduce the 3D-HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that is a central or a satellite galaxy. The same procedure is applied to a $z=0$ sample selected from SDSS. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is $t_{rm quench} sim 2-5$ Gyr; longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample, satellites are quenched by exhaustion of their gas reservoir in absence of cosmological accretion. We find that the quenching times can be separated into a delay phase during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ($sim 0.4-0.6$ Gyr), as shown previously at $z=0$. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.