No Arabic abstract
We present a simple construction for a tridiagonal matrix $T$ that commutes with the hopping matrix for the entanglement Hamiltonian ${cal H}$ of open finite free-Fermion chains associated with families of discrete orthogonal polynomials. It is based on the notion of algebraic Heun operator attached to bispectral problems, and the parallel between entanglement studies and the theory of time and band limiting. As examples, we consider Fermionic chains related to the Chebychev, Krawtchouk and dual Hahn polynomials. For the former case, which corresponds to a homogeneous chain, the outcome of our construction coincides with a recent result of Eisler and Peschel; the latter cases yield commuting operators for particular inhomogeneous chains. Since $T$ is tridiagonal and non-degenerate, it can be readily diagonalized numerically, which in turn can be used to calculate the spectrum of ${cal H}$, and therefore the entanglement entropy.
It is pointed out that, for the fractional Fokker-Planck equation for subdiffusion proposed by Metzler, Barkai, and Klafter [Phys. Rev. Lett. 82 (1999) 3563], there are four types of infinitely many exact solutions associated with the newly discovered exceptional orthogonal polynomials. They represent fractionally deform
We consider the unital associative algebra $mathcal{A}$ with two generators $mathcal{X}$, $mathcal{Z}$ obeying the defining relation $[mathcal{Z},mathcal{X}]=mathcal{Z}^2+Delta$. We construct irreducible tridiagonal representations of $mathcal{A}$. Depending on the value of the parameter $Delta$, these representations are associated to the Jacobi matrices of the para-Krawtchouk, continuous Hahn, Hahn or Jacobi polynomials.
The critical curves of the q-state Potts model can be determined exactly for regular two-dimensional lattices G that are of the three-terminal type. Jacobsen and Scullard have defined a graph polynomial P_B(q,v) that gives access to the critical manifold for general lattices. It depends on a finite repeating part of the lattice, called the basis B, and its real roots in the temperature variable v = e^K - 1 provide increasingly accurate approximations to the critical manifolds upon increasing the size of B. These authors computed P_B(q,v) for large bases (up to 243 edges), obtaining determinations of the ferromagnetic critical point v_c > 0 for the (4,8^2), kagome, and (3,12^2) lattices to a precision (of the order 10^{-8}) slightly superior to that of the best available Monte Carlo simulations. In this paper we describe a more efficient transfer matrix approach to the computation of P_B(q,v) that relies on a formulation within the periodic Temperley-Lieb algebra. This makes possible computations for substantially larger bases (up to 882 edges), and the precision on v_c is hence taken to the range 10^{-13}. We further show that a large variety of regular lattices can be cast in a form suitable for this approach. This includes all Archimedean lattices, their duals and their medials. For all these lattices we tabulate high-precision estimates of the bond percolation thresholds p_c and Potts critical points v_c. We also trace and discuss the full Potts critical manifold in the (q,v) plane, paying special attention to the antiferromagnetic region v < 0. Finally, we adapt the technique to site percolation as well, and compute the polynomials P_B(p) for certain Archimedean and dual lattices (those having only cubic and quartic vertices), using very large bases (up to 243 vertices). This produces the site percolation thresholds p_c to a precision of the order 10^{-9}.
We analyze the quantum trajectory dynamics of free fermions subject to continuous monitoring. For weak monitoring, we identify a novel dynamical regime of subextensive entanglement growth, reminiscent of a critical phase with an emergent conformal invariance. For strong monitoring, however, the dynamics favors a transition into a quantum Zeno-like area-law regime. Close to the critical point, we observe logarithmic finite size corrections, indicating a Berezinskii-Kosterlitz-Thouless mechanism underlying the transition. This uncovers an unconventional entanglement transition in an elementary, physically realistic model for weak continuous measurements. In addition, we demonstrate that the measurement aspect in the dynamics is crucial for whether or not a phase transition takes place.
The Riemann-Hilbert problems for multiple orthogonal polynomials of types I and II are used to derive string equations associated to pairs of Lax-Orlov operators. A method for determining the quasiclassical limit of string equations in the phase space of the Whitham hierarchy of dispersionless integrable systems is provided. Applications to the analysis of the large-n limit of multiple orthogonal polynomials and their associated random matrix ensembles and models of non-intersecting Brownian motions are given.