Do you want to publish a course? Click here

Identification of Time-varying in situ Signals in Quantum Circuits

153   0   0.0 ( 0 )
 Added by Xi Cao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The identification of time-varying textit{in situ} signals is crucial for characterizing the dynamics of quantum processes occurring in highly isolated environments. Under certain circumstances, they can be identified from time-resolved measurements via Ramsey interferometry experiments, but only with very special probe systems can the signals be explicitly read out, and a theoretical analysis is lacking on whether the measurement data are sufficient for unambiguous identification. In this paper, we formulate this problem as the invertibility of the underlying quantum input-output system, and derive the algebraic identifiability criterion and the algorithm for numerically identifying the signals. The criterion and algorithm can be applied to both closed and open quantum systems, and their effectiveness is demonstrated by numerical examples.



rate research

Read More

Across diverse biological systems -- ranging from neural networks to intracellular signaling and genetic regulatory networks -- the information about changes in the environment is frequently encoded in the full temporal dynamics of the network nodes. A pressing data-analysis challenge has thus been to efficiently estimate the amount of information that these dynamics convey from experimental data. Here we develop and evaluate decoding-based estimation methods to lower bound the mutual information about a finite set of inputs, encoded in single-cell high-dimensional time series data. For biological reaction networks governed by the chemical Master equation, we derive model-based information approximations and analytical upper bounds, against which we benchmark our proposed model-free decoding estimators. In contrast to the frequently-used k-nearest-neighbor estimator, decoding-based estimators robustly extract a large fraction of the available information from high-dimensional trajectories with a realistic number of data samples. We apply these estimators to previously published data on Erk and Ca signaling in mammalian cells and to yeast stress-response, and find that substantial amount of information about environmental state can be encoded by non-trivial response statistics even in stationary signals. We argue that these single-cell, decoding-based information estimates, rather than the commonly-used tests for significant differences between selected population response statistics, provide a proper and unbiased measure for the performance of biological signaling networks.
In this paper, we develop a system identification algorithm to identify a model for unknown linear quantum systems driven by time-varying coherent states, based on empirical single-shot continuous homodyne measurement data of the systems output. The proposed algorithm identifies a model that satisfies the physical realizability conditions for linear quantum systems, challenging constraints not encountered in classical (non-quantum) linear system identification. Numerical examples on a multiple-input multiple-output optical cavity model are presented to illustrate an application of the identification algorithm.
This paper is concerned with the inverse problem of determining the time and space dependent source term of diffusion equations with constant-order time-fractional derivative in $(0,2)$. We examine two different cases. In the first one, the source is the product of two spatial and temporal terms, and we prove that both of them can be retrieved by knowledge of one arbitrary internal measurement of the solution for all times. In the second case, we assume that the first term of the product varies with one fixed space variable, while the second one is a function of all the remaining space variables and the time variable, and we show that both terms are uniquely determined by two arbitrary lateral measurements of the solution over the entire time span. These two source identification results boil down to a weak unique continuation principle in the first case and a unique continuation principle for Cauchy data in the second one, that are preliminarily established. Finally, numerical reconstruction of spatial term of source terms in the form of the product of two spatial and temporal terms, is carried out through an iterative algorithm based on the Tikhonov regularization method.
Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly non-canonical) commuting parent Hamiltonian may be found. Beside graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi. Extensions to representative classes of mixed graph-product and thermal states are also discussed.
Heisenberg spin chains can act as quantum wires transferring quantum states either perfectly or with high fidelity. Gaussian packets of excitations passing through dual rails can encode the two states of a logical qubit, depending on which rail is empty and which rail is carrying the packet. With extra interactions in one or between different chains, one can introduce interaction zones in arrays of such chains, where specific one or two qubit gates act on any qubit which passes through these interaction zones. Therefore universal quantum computation is made possible in a static way where no external control is needed. This scheme will then pave the way for a scalable way of quantum computation where specific hardwares can be connected to make large quantum circuits. Our scheme is an improvement of a recent scheme where we have achieved to borrow an idea from quantum electrodynamics to replace non-local interactions between spin chains with local interactions mediated by an ancillary chain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا