Do you want to publish a course? Click here

Ultra-Compact Coupling Structures for Heterogeneously Integrated Silicon Lasers

121   0   0.0 ( 0 )
 Added by Xuhan Guo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Due to the inherent in-direct bandgap nature of Silicon, heterogeneous integration of semiconductor lasers on Silicon on Insulator (SOI) is crucial for next-generation on-chip optical interconnects. Compact, high-efficient and high-tolerant couplers between III-V light source and silicon chips have been the challenge for photonic integrated circuit (PIC). Here, we redesign the taper adiabatic coupler with the total coupling length of only 4 {mu}m, and propose another two novel slot coupler and bridge-SWG coupler with both coupling length of 7 {mu}m, to heterogeneously integrate III-V lasers and silicon chips. We study theoretically the optical mode coupling process through the redesigned taper coupler, the final coupling results match well with the simulation in 3D-FDTD. The three compact couplers represent fundamental TE mode coupling efficiencies all over 90%, even 95.7% for bridge-SWG coupler, to the best of our knowledge, are also the shortest coupling structures (7 um). Moreover, these coupling structures also possess excellent fabrication tolerance.



rate research

Read More

157 - Chao Xiang , Joel Guo , Warren Jin 2021
Silicon nitride (SiN) waveguides with ultra-low optical loss enable integrated photonic applications including low noise, narrow linewidth lasers, chip-scale nonlinear photonics, and microwave photonics. Lasers are key components to SiN photonic integrated circuits (PICs), but are difficult to fully integrate with low-index SiN waveguides due to their large mismatch with the high-index III-V gain materials. The recent demonstration of multilayer heterogeneous integration provides a practical solution and enabled the first-generation of lasers fully integrated with SiN waveguides. However a laser with high device yield and high output power at telecommunication wavelengths, where photonics applications are clustered, is still missing, hindered by large mode transition loss, nonoptimized cavity design, and a complicated fabrication process. Here, we report high-performance lasers on SiN with tens of milliwatts output through the SiN waveguide and sub-kHz fundamental linewidth, addressing all of the aforementioned issues. We also show Hertz-level linewidth lasers are achievable with the developed integration techniques. These lasers, together with high-$Q$ SiN resonators, mark a milestone towards a fully-integrated low-noise silicon nitride photonics platform. This laser should find potential applications in LIDAR, microwave photonics and coherent optical communications.
Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth as well as compatibility for embedding into integrated photonic circuits are of high importance for a wide range of applications. We present an overview on our recently developed hybrid-integrated diode lasers with feedback from low-loss silicon nitride (Si3N4 in SiO2) circuits, to provide sub-100-Hz-level intrinsic linewidths, up to 120 nm spectral coverage around 1.55 um wavelength, and an output power above 100 mW. We show dual-wavelength operation, dual-gain operation, laser frequency comb generation, and present work towards realizing a visible-light hybrid integrated diode laser.
Compact fiber-to-chip couplers play an important role in optical interconnections, especially in data centers. However, the development of couplers has been mostly limited to standard single-mode fibers, with few devices compatible with multicore and multimode fibers. Through the use of state-of-the-art optimization algorithms, we designed two ultra-compact couplers for use in a seven-core fiber with 32 $mu$m core spacing. We demonstrate for the first time a compact dual-polarization coupler capable of addressing all cores simultaneously, with measured coupling efficiency of $-$4.3 dB and with a 3-dB bandwidth of 48 nm. We also demonstrate a single-polarization coupler with efficiency of $-$2.9 dB and an operating bandwidth of 77 nm. The dual-polarization coupler has footprint of 20 $mu$m $times$ 10 $mu$m per core, which makes it the smallest fiber-to-chip coupler experimentally demonstrated on a standard silicon-on-insulator platform.
Optical beamforming networks (OBFNs) based on optical true time delay lines (OTTDLs) are well-known as the promising candidate to solve the bandwidth limitation of traditional electronic phased array antennas (PAAs) due to beam squinting. Here we report the first monolithic 1x8 microwave photonic beamformer based on switchable OTTDLs on the silicon-on-insulator platform. The chip consists of a modulator, an eight-channel OBFN, and 8 photodetectors, which includes hundreds of active and passive components in total. It has a wide operating bandwidth from 8 to 18 GHz, which is almost two orders larger than that of electronic PAAs. The beam can be steered to 31 distinguishable angles in the range of -75.51{deg} to 75.64{deg} based on the beam pattern calculation with the measured RF response. The response time for beam steering is 56 {mu}s. These results represent a significant step towards the realization of integrated microwave photonic beamformers that can satisfy compact size and low power consumption requirements for the future radar and wireless communication systems.
Precision frequency and phase synchronization between distinct fiber interconnected nodes is critical for a wide range of applications, including atomic timekeeping, quantum networking, database synchronization, ultra-high-capacity coherent optical communications and hyper-scale data centers. Today, many of these applications utilize precision, tabletop laser systems, and would benefit from integration in terms of reduced size, power, cost, and reliability. In this paper we report a record low 3x10^-4 rad^2 residual phase error variance for synchronization based on independent, spectrally pure, ultra-high mutual coherence, photonic integrated lasers. This performance is achieved with stimulated Brillouin scattering lasers that are stabilized to independent microcavity references, realizing sources with 30 Hz integral linewidth and a fractional frequency instability less than or equal to 2x10^-13 at 50 ms. This level of low phase noise and carrier stability enables a new type of optical-frequency-stabilized phase-locked loop (OFS-PLL) that operates with a less than 800 kHz loop bandwidth, eliminating traditional power consuming high bandwidth electronics and digital signal processors used to phase lock optical carriers. Additionally, we measure the residual phase error down to a received carrier power of -34 dBm, removing the need to transmit in-band or out-of-band synchronized carriers. These results highlight the promise for a path to spectrally pure, ultra-stable, integrated lasers for network synchronization, precision time distribution protocols, quantum-clock networks, and multiple-Terabit per second coherent DSP-free fiber-optic interconnects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا