Global rigidity of 2-dimensional linearly constrained frameworks


Abstract in English

A linearly constrained framework in $mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system, and is rigid if it is uniquely defined within some small open neighbourhood. Streinu and Theran characterised generic rigidity of linearly constrained frameworks in $mathbb{R}^2$ in 2010. We obtain an analagous characterisation for generic global rigidity in $mathbb{R}^2$. More precisely we show that a generic linearly constrained framework in $mathbb{R}^2$ is globally rigid if and only if it is redundantly rigid and `balanced. For generic frameworks which are not balanced, we determine the precise number of solutions to the constraint system whenever the underlying rigidity matroid of the given framework is connected. We also obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in $mathbb{R}^d$.

Download