Do you want to publish a course? Click here

Contact-less phonon detection with massive cryogenic absorbers

90   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed a contact-less technique for the real time measurement of a-thermal (Cooper-pair breaking) phonons in an absorber held at sub-Kelvin temperatures. In particular, a thin-film aluminum superconducting resonator was realized on a 30-grams high-resistivity silicon crystal. The lumped-element resonator is inductively excited/read-out by a radio-frequency microstrip feed-line deposited on another wafer; the sensor, a Kinetic Inductance Detector (KID), is read-out without any physical contact or wiring to the absorber. The resonator demonstrates excellent electrical properties, particularly in terms of its internal quality factor. The detection of alphas and gammas in the massive absorber is achieved, with an RMS energy resolution of about 1.4 keV, which is already interesting for particle physics applications. The resolution of this prototype detector is mainly limited by the low (about 0.3%) conversion efficiency of deposited energy to superconducting excitations (quasi-particles). The demonstrated technique can be further optimized, and used to produce large arrays of a-thermal phonon detectors, for use in rare events searches such as: dark matter direct detection,neutrino-less double beta decay, or coherent elastic neutrino-nucleus scattering.



rate research

Read More

In this paper we report on the characterization of SiPM tiles developed for the R & D on the DUNE Photon Detection System. The tiles were produced by Fondazione Bruno Kessler (FBK) employing NUV-HD-SF SiPMs. Special emphasis is given on cryo-reliability of the sensors, i.e. the stability of electric and mechanical properties after thermal cycles at room and 77K temperature. The characterization includes the determination of the I-V curve, a high sensitivity measurement of Dark Count Rate at different overvoltages, and correlated noise. The single p.e. sensitivity is measured as a function of the number of sensors connected to a single electronic channel, after amplification at 77K using a dedicated cold amplifier.
Searches for WIMP dark matter will in the near future be sensitive to solar neutrinos. Directional detection offers a method to reject solar neutrinos and improve WIMP searches, but reaching that sensitivity with existing directional detectors poses challenges. We propose a combined atomic/particle physics approach using a large-volume diamond detector. WIMP candidate events trigger a particle detector, after which spectroscopy of nitrogen vacancy centers reads out the direction of the incoming particle. We discuss the current state of technologies required to realize directional detection in diamond and present a path towards a detector with sensitivity below the neutrino floor.
This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two commercial suppliers and with different silicon and boron concentrations were studied for their low temperature optical and scintillation properties. All samples are n-type even at low temperatures and exhibit emission between silicon donors and boron acceptors that peaks at 1.33 eV (930 nm). The lowest excitation band peaks at 1.44 eV (860 nm) and the overlap between the emission and excitation bands is small. The X-ray excited luminosities range from 7 to 43 photons/keV. Thermally stimulated luminescence measurements show that n-type GaAs does not accumulate metastable radiative states that could cause afterglow. Further development and use with cryogenic photodetectors promises a remarkable combination of large target size, ultra-low backgrounds, and a sensitivity to electron recoils of a few eV that would be produced by DM particles as light as a few MeV/c2.
ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogenic charge-sensitive preamplifiers with the previously used room-temperature-operated charge preamplifiers.
We present the first proof-of-concept simulations of detectors using biomaterials to detect particle interactions. The essential idea behind a DNA detector involves the attachment of a forest of precisely-sequenced single or double-stranded nucleic acids from a thin holding layer made of a high-density material. Incoming particles break a series of strands along a roughly co-linear chain of interaction sites and the severed segments then fall to a collection area. Since the sequences of base pairs in nucleic acid molecules can be precisely amplified and measured using polymerase chain reaction (PCR), the original spatial position of each broken strand inside the detector can be reconstructed with nm precision. Motivated by the potential use as a low-energy directional particle tracker, we perform the first Monte Carlo simulations of particle interactions inside a DNA detector. We compare the track topology as a function of incoming direction, energy, and particle type for a range of ionising particles. While particle identification and energy reconstruction might be challenging without a significant scale-up, the excellent potential angular and spatial resolution ($lesssim 25^circ$ axial resolution for a keV-scale particles and nm-scale track segments) are clear advantages of this concept. We conclude that a DNA detector could be a cost-effective, portable, and powerful new particle detection technology. We outline the outstanding experimental challenges, and suggest directions for future laboratory tests.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا