The 8-parameter Fisher-Bingham distribution on the sphere


Abstract in English

The Fisher-Bingham distribution ($mathrm{FB}_8$) is an eight-parameter family of probability density functions (PDF) on $S^2$ that, under certain conditions, reduce to spherical analogues of bivariate normal PDFs. Due to difficulties in computing its overall normalization constant, applications have been mainly restricted to subclasses of $mathrm{FB}_8$, such as the Kent ($mathrm{FB}_5$) or von Mises-Fisher (vMF) distributions. However, these subclasses often do not adequately describe directional data that are not symmetric along great circles. The normalizing constant of $mathrm{FB}_8$ can be numerically integrated, and recently Kume and Sei showed that it can be computed using an adjusted holonomic gradient method. Both approaches, however, can be computationally expensive. In this paper, I show that the normalization of $mathrm{FB}_8$ can be expressed as an infinite sum consisting of hypergeometric functions, similar to that of the $mathrm{FB}_5$. This allows the normalization to be computed under summation with adequate stopping conditions. I then fit the $mathrm{FB}_8$ to a synthetic dataset using a maximum-likelihood approach and show its improvements over a fit with the more restrictive $mathrm{FB}_5$ distribution.

Download