Automated Definition of Skeletal Disease Burden in Metastatic Prostate Carcinoma: a 3D analysis of SPECT/CT images


Abstract in English

To meet the current need for skeletal tumor-load estimation in prostate cancer (mCRPC), we developed a novel approach, based on adaptive bone segmentation. In this study, we compared the program output with existing estimates and with the radiological outcome. Seventy-six whole-body 99mTc-DPD-SPECT/CT from mCRPC patients were analyzed. The software identified the whole skeletal volume (SVol) and classified it voxels metastases (MVol) or normal bone (BVol). SVol was compared with the estimation of a commercial software. MVol was compared with manual assessment and with PSA-level. Counts/voxel were extracted from MVol and BVol. After six cycles of 223RaCl2-therapy every patient was re-evaluated as progressing (PD), stabilized (SD) or responsive (PR). SVol correlated with the one of the commercial software (R=0,99, p<0,001). MVol correlated with manually-counted lesions (R=0,61, p<0,001) and PSA (R=0,46, p<0.01). PD had a lower counts/voxel in MVol than PR/SD (715 pm 190 Vs. 975 pm 215 and 1058 pm 255, p<0,05 and p<0,01) and in BVol (PD 275 pm 60, PR 515 pm 188 and SD 528 pm 162 counts/voxel, p<0,001). Segmentation-based tumor load correlated with radiological/laboratory indices. Uptake was linked with the clinical outcome, suggesting that metastases in PD patients have a lower affinity for bone-seeking radionuclides and might benefit less from bone-targeted radioisotope therapies.

Download