Electronic health records (EHR) systematically represent patient data in digital form. However, text and visualization based EHR systems are poorly integrated in the hospital workflow due to their complex and rather non-intuitive access structure. This is especially disadvantageous in clinical cooperative situations that require an efficient, task specific information transfer. In this paper we introduce a novel concept of anatomically integrated in-place visualization designed to engage with cooperative tasks on a neurosurgical ward. Based on the findings of our field studies and the derived design goals, we propose an approach that follows a visual tradition in medicine, which is tightly related with anatomy, by using a virtual patients body as spatial representation of visually encoded abstract medical data. More specifically, we provide a generic set of formal requirements for these kinds of in-place visualizations, we apply these requirements in order to achieve a specific visualization of neurological symptoms related to the differential diagnosis of spinal disc herniation, and we present a prototypical implementation of the visualization concept on a mobile device. Moreover, we discuss various challenges related to visual encoding and visibility of the body model components. Finally, the prototype is evaluated by 10 neurosurgeons, who assess the validity and the further potential of the proposed approach.