Experimental realisation of $mathcal{PT}$-symmetric flat bands


Abstract in English

The capability to temporarily arrest the propagation of optical signals is one of the main challenges hampering the ever more widespread use of light in rapid long-distance transmission as well as all-optical on-chip signal processing or computations. To this end, flat-band structures are of particular interest, since their hallmark compact eigenstates do not only allow for the localization of wave packets, but importantly also protect their transverse profile from deterioration without the need for additional diffraction management. In this work, we experimentally demonstrate that, far from being a nuisance to be compensated, judiciously tailored loss distributions can in fact be the key ingredient in synthesizing such flat bands in non-Hermitian environments. We probe their emergence in the vicinity of an exceptional point and directly observe the associated compact localised modes that can be excited at arbitrary positions of the periodic lattice.

Download