Do you want to publish a course? Click here

First-Order Hyper-selective Binding Transition of Multivalent Particles Under Force

89   0   0.0 ( 0 )
 Added by Nicholas Tito
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order---a new binding regime which we term hyper-selective. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards all or nothing binding selectivity in the design of multivalent constructs.



rate research

Read More

Multivalent particles competing for binding on the same surface can exhibit switch-like behaviour, depending on the concentration of receptors on the surface. When the receptor concentration is low, energy dominates the free energy of binding, and particles having a small number of strongly-binding ligands preferentially bind to the surface. At higher receptor concentrations, multivalent effects become significant, and entropy dominates the binding free energy; particles having many weakly-binding ligands preferentially bind to the surface. Between these two regimes there is a switch-point, at which the surface binds the two species of particles equally strongly. We demonstrate that a simple theory can account for this switch-like behaviour and present numerical calculations that support the theoretical predictions. We argue that binding selectivity based on receptor density, rather than identity, may have practical applications.
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this superselectivity, however a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster Resonance Energy Transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a non-linear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions and we confirm that the time-scale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide new, dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
We analyse the experimental particle current auto correlation function (CAF) of suspensions of hard spheres. Interactions between the particles are mediated by thermally activated acoustic excitations in the solvent. Those acoustic modes are tantamount to the systems (energy) microstates and by their orthogonality, each of those modes can be identified with an independent Brownian particle current. Accordingly, partitioning of the systems energy states is impressed on the CAF. This impression provides a novel measure of the entropy and location of a partitioning/entropy limit at a packing fraction that coincides with that of the observed suspensions first order freezing transition.
We present a simple yet accurate numerical approach to compute the free energy of binding of multivalent objects on a receptor-coated surface. The method correctly accounts for the fact that one ligand can bind to at most one receptor. The numerical approach is based on a saddle-point approximation to the computation of a complex residue. We compare our theory with the powerful Valence-Limited Interaction Theory (VLIT) (J. Chem. Phys. 137, 094108(2012), J. Chem. Phys. 138, 021102(2013)) and find excellent agreement in the regime where that theory is expected to work. However, the present approach even works for low receptor/ligand densities, where VLIT breaks down.
The present article provides an overview of the recent progress in the direct force measurements between individual pairs of colloidal particles in aqueous salt solutions. Results obtained by two different techniques are being highlighted, namely with the atomic force microscope (AFM) and optical tweezers. One finds that the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) represents an accurate description of the force profiles even in the presence of multivalent ions, typically down to distances of few nanometers. However, the corresponding Hamaker constants and diffuse layer potentials must be extracted from the force profiles. At low salt concentrations, double layer forces remain repulsive and may become long ranged. At short distances, additional short range non-DLVO interactions may become important. Such an interaction is particularly relevant in the presence of multivalent counterions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا